
Paxos and Chubby

P4XOS, dude



What and why

• Motivation for Paxos 

• What exactly is Paxos 

• How does it work? 

• Chubby lock-service - the Google way…



The Island of Paxos



Part-Time Parliament
• Determine the law of the land 

• the Law: a sequence of decrees 

• the Law was determined in the Chamber 

• Priests wandered in and out of the Chamber 

• Can the Law be consistent???



Some assumptions
• Each priest had their own ledger 

• An entry in the list of decrees was never changed 

• Acoustics in the chamber were very poor 
(messengers were used to deliver messages) 

• When in the Chamber, they all devoted themselves 
to the business of the parliament



The Single-Decree Synod
• Chosen through a series of ballots 

• A ballot, B, was a referendum on a single decree 

• Priest life was simple (voting, or not voting)

• Quorum - was a set of priests (for the ballot) 

• Ballot successful!! - if and only if every priest in the 
quorum voted for the decree



This is paxos…
B1(B) - Each ballot in B has a unique ballot number 

B2(B) - The quorums of any two ballots in B have at 
least one priest in common 

B3(B) - For every ballot B in B, if any priest in B’s 
quorum voted in an earlier ballot in B, then the 
decree of B equals the decree of the latest of those 
earlier ballots

* B - the set of all ballots
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some theorems

1. If B1 - B3 hold, then any two successful ballots are 
for the same decree 

2. If there are enough priests in the Chamber, then it 
is possible to conduct a successful ballot while 
preserving B1 - B3. (does not guarantee progress 
though…)



• 3 states  
• 5 possible messages

Priest 1
nextBal =  11

prevVote = null
lastTried = 5
dec = null

Priest 2
nextBal =  3

prevVote = null
lastTried = null

dec = null

Priest 3
nextBal =  7

prevVote = 7, beer
lastTried = null

dec = null
Priest 4
nextBal =  5

prevVote = null
lastTried = null

dec = null

Messages:

NextBallot(b)
LastVote(b, v)

BeginBallot(b, d)
Voted(b, q)
Success(d)



1. Priest p choose a new ballot number b, sends a NextBallot(b) message to 
some priests 

2. Upon receipt of a NextBallot(b) message from p with b>nextBal[q], priest q 
sets nextBal[q] to b and sends a LastVote(b, v) message to p, where v equals 
prevVote[q]. (Ignored if b<nextBal[q].) Promise to ignore ballots smaller 
than b 

3. After receiving a LastVote(b, v) message from every priest in some majority 
set Q, where b=lastTried[p], priest p initiates a new ballot with number b, 
quorum Q, and decree d, where d is chosen to satisfy B3. He then sends a 
BeginBallot(b, d) message to every priest in Q. 

4. Upon receipt of a BeginBallot(b, d) message with b=nextBal[q], priest q casts 
his vote in ballot number b, sets prevVote[q] to this vote, and sends a 
Voted(b, q) message to p. (Ignored if b =/ nextBal[q]) 

5. If p has received a Voted(b, q) message from every priest q in Q (the quorum 
for ballot number b), where b=lastTried[p], then he writes d (the decree of the 
ballot) in his ledger and sends a Success(d) message to every priest. 

6. Upon receiving a Success(d) message, a priest enters decree d in his ledger.



Priest 1
nextBal =  11

prevVote = null
lastTried = 5

(1) Choose a new 
ballot number

b = 12

dec = null

Priest 2
nextBal =  3

prevVote = null
lastTried = null

dec = null
Priest 3
nextBal =  7

prevVote = 7, beer
lastTried = null

dec = null

Priest 4
nextBal =  5

prevVote = null
lastTried = null

dec = null

Priest 5
nextBal =  4

prevVote = null
lastTried = null

dec = null

Priest 6

On Vacation
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Priest 1
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(3) Choose
Q, b, dec
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Priest 1
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(4) Set
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sends a 
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Priest 1
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from all in Q!
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Priest 1
nextBal =  12

prevVote = null
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(6) all priests enter
it in the ledger
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Priest 2
nextBal =  12

prevVote = 12, beer
lastTried = null
dec = beer
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b = 12, d = beer
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prevVote = null
lastTried = 6
dec = beer



Some more reading

• The Part-time Parliament, 1998 - Lamport 

• Paxos made simple, 2001 - Lamppost 

• Paxos made live, 2007 - Chandra et al (Google)



Chubby   

Mike Burrows, Google Inc.

P4XOS, dude

Not saying that 
this is Google…

Nor Mike Burrows…



What is Chubby?
• A lock service 

• Storage for loosely-coupled distributed systems 

• “The purpose of the lock service is to allow its 
clients to synchronise their activities and to agree 
on basic information about their environment” 

• Google File System (GFS) and Bigtable use 
Chubby as the root of their dist. structure



System Structure

• Chubby cell run Paxos 

• Client directs ALL requests 
to the master 

• Master is elected for some 
time - master lease

suggests that an event notification mechanism would
be useful to avoid polling.

• Even if clients need not poll files periodically, many
will; this is a consequence of supporting many devel-
opers. Thus, caching of files is desirable.

• Our developers are confused by non-intuitive caching
semantics, so we prefer consistent caching.

• To avoid both financial loss and jail time, we provide
security mechanisms, including access control.
A choice that may surprise some readers is that we

do not expect lock use to be fine-grained, in which they
might be held only for a short duration (seconds or less);
instead, we expect coarse-grained use. For example, an
application might use a lock to elect a primary, which
would then handle all access to that data for a consider-
able time, perhaps hours or days. These two styles of use
suggest different requirements from a lock server.

Coarse-grained locks impose far less load on the lock
server. In particular, the lock-acquisition rate is usu-
ally only weakly related to the transaction rate of the
client applications. Coarse-grained locks are acquired
only rarely, so temporary lock server unavailability de-
lays clients less. On the other hand, the transfer of a lock
from client to client may require costly recovery proce-
dures, so one would not wish a fail-over of a lock server
to cause locks to be lost. Thus, it is good for coarse-
grained locks to survive lock server failures, there is little
concern about the overhead of doing so, and such locks
allow many clients to be adequately served by a modest
number of lock servers with somewhat lower availability.

Fine-grained locks lead to different conclusions. Even
brief unavailability of the lock server may cause many
clients to stall. Performance and the ability to add new
servers at will are of great concern because the trans-
action rate at the lock service grows with the combined
transaction rate of clients. It can be advantageous to re-
duce the overhead of locking by not maintaining locks
across lock server failure, and the time penalty for drop-
ping locks every so often is not severe because locks are
held for short periods. (Clients must be prepared to lose
locks during network partitions, so the loss of locks on
lock server fail-over introduces no new recovery paths.)

Chubby is intended to provide only coarse-grained
locking. Fortunately, it is straightforward for clients to
implement their own fine-grained locks tailored to their
application. An application might partition its locks into
groups and use Chubby’s coarse-grained locks to allocate
these lock groups to application-specific lock servers.
Little state is needed to maintain these fine-grain locks;
the servers need only keep a non-volatile, monotonically-
increasing acquisition counter that is rarely updated.
Clients can learn of lost locks at unlock time, and if a
simple fixed-length lease is used, the protocol can be
simple and efficient. The most important benefits of this

client processes

5 servers of a Chubby cell
client

application
chubby
library

client
application

chubby
library

. . .
♠

RPCs ♠ master♠♠♠

!!!!!"

✏✏✏✏✏✶

Figure 1: System structure

scheme are that our client developers become responsible
for the provisioning of the servers needed to support their
load, yet are relieved of the complexity of implementing
consensus themselves.

2.2 System structure

Chubby has two main components that communicate
via RPC: a server, and a library that client applications
link against; see Figure 1. All communication between
Chubby clients and the servers is mediated by the client
library. An optional third component, a proxy server, is
discussed in Section 3.1.

A Chubby cell consists of a small set of servers (typi-
cally five) known as replicas, placed so as to reduce the
likelihood of correlated failure (for example, in different
racks). The replicas use a distributed consensus protocol
to elect a master; the master must obtain votes from a
majority of the replicas, plus promises that those replicas
will not elect a different master for an interval of a few
seconds known as the master lease. The master lease is
periodically renewed by the replicas provided the master
continues to win a majority of the vote.

The replicas maintain copies of a simple database, but
only the master initiates reads and writes of this database.
All other replicas simply copy updates from the master,
sent using the consensus protocol.

Clients find the master by sending master location
requests to the replicas listed in the DNS. Non-master
replicas respond to such requests by returning the iden-
tity of the master. Once a client has located the master,
the client directs all requests to it either until it ceases
to respond, or until it indicates that it is no longer the
master. Write requests are propagated via the consensus
protocol to all replicas; such requests are acknowledged
when the write has reached a majority of the replicas in
the cell. Read requests are satisfied by the master alone;
this is safe provided the master lease has not expired, as
no other master can possibly exist. If a master fails, the
other replicas run the election protocol when their master
leases expire; a new master will typically be elected in a
few seconds. For example, two recent elections took 6s
and 4s, but we see values as high as 30s (§4.1).
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Files and namespace
• ls/foo/wombat/pouch

• ls - stands for lock service 

• foo - the name of the chubby cell  

• only files and directories (nodes) 

• Any node can act as an advisory reader/writer lock 

• Meta Data @ node - e.g. access control lists (ACLs)



API

• open() - opens a handle to a node 

• close() - guess what this does… 

• acquire(), release() - takes and releases a lock



Locks

• reader-writer advisory locks (like mutexes) 

• acquiring either lock requires write permissions 

• Lock-delay - you kinda keep the lock after you die



Sessions and KeepAlives

• a relationship between Chubby and the Client 

• handshakes keep it alive 

• each session has a lease 

• Why? - expensive to connect to a new master



Sessions and KeepAlives

lease M3
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lease M1
lease M2✲
✲ ✲

❄❄
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✄
✄
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Figure 2: The role of the grace period in master fail-over

fore the end of the client’s grace period, the client enables
its cache once more. Otherwise, the client assumes that
the session has expired. This is done so that Chubby API
calls do not block indefinitely when a Chubby cell be-
comes inaccessible; calls return with an error if the grace
period ends before communication is re-established.

The Chubby library can inform the application when
the grace period begins via a jeopardy event. When the
session is known to have survived the communications
problem, a safe event tells the client to proceed; if the
session times out instead, an expired event is sent. This
information allows the application to quiesce itself when
it is unsure of the status of its session, and to recover
without restarting if the problem proves to be transient.
This can be important in avoiding outages in services
with large startup overhead.

If a client holds a handle H on a node and any oper-
ation on H fails because the associated session has ex-
pired, all subsequent operations on H (except Close()
and Poison()) will fail in the same way. Clients can use
this to guarantee that network and server outages cause
only a suffix of a sequence of operations to be lost, rather
than an arbitrary subsequence, thus allowing complex
changes to be marked as committed with a final write.

2.9 Fail-overs

When a master fails or otherwise loses mastership, it dis-
cards its in-memory state about sessions, handles, and
locks. The authoritative timer for session leases runs at
the master, so until a new master is elected the session
lease timer is stopped; this is legal because it is equiva-
lent to extending the client’s lease. If a master election
occurs quickly, clients can contact the new master before
their local (approximate) lease timers expire. If the elec-
tion takes a long time, clients flush their caches and wait
for the grace period while trying to find the new master.
Thus the grace period allows sessions to be maintained
across fail-overs that exceed the normal lease timeout.

Figure 2 shows the sequence of events in a lengthy
master fail-over event in which the client must use its
grace period to preserve its session. Time increases from
left to right, but times are not to scale. Client ses-

sion leases are shown as thick arrows both as viewed
by both the old and new masters (M1-3, above) and the
client (C1-3, below). Upward angled arrows indicate
KeepAlive requests, and downward angled arrows their
replies. The original master has session lease M1 for
the client, while the client has a conservative approxima-
tion C1. The master commits to lease M2 before inform-
ing the client via KeepAlive reply 2; the client is able to
extend its view of the lease C2. The master dies before
replying to the next KeepAlive, and some time elapses
before another master is elected. Eventually the client’s
approximation of its lease (C2) expires. The client then
flushes its cache and starts a timer for the grace period.

During this period, the client cannot be sure whether
its lease has expired at the master. It does not tear down
its session, but it blocks all application calls on its API to
prevent the application from observing inconsistent data.
At the start of the grace period, the Chubby library sends
a jeopardy event to the application to allow it to quiesce
itself until it can be sure of the status of its session.

Eventually a new master election succeeds. The mas-
ter initially uses a conservative approximation M3 of the
session lease that its predecessor may have had for the
client. The first KeepAlive request (4) from the client to
the new master is rejected because it has the wrong mas-
ter epoch number (described in detail below). The retried
request (6) succeeds but typically does not extend the
master lease further because M3 was conservative. How-
ever the reply (7) allows the client to extend its lease (C3)
once more, and optionally inform the application that its
session is no longer in jeopardy. Because the grace pe-
riod was long enough to cover the interval between the
end of lease C2 and the beginning of lease C3, the client
saw nothing but a delay. Had the grace period been less
than that interval, the client would have abandoned the
session and reported the failure to the application.

Once a client has contacted the new master, the client
library and master co-operate to provide the illusion to
the application that no failure has occurred. To achieve
this, the new master must reconstruct a conservative ap-
proximation of the in-memory state that the previous
master had. It does this partly by reading data stored
stably on disc (replicated via the normal database repli-
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Design Rationale

• lock service, instead of a paxos library 

• small-files to permit the election of a primary



Intended use

• Whenever a bunch of 
clients need to elect a 
primary among 
themselves 

• GFS is a great example 

Primary
Replica

Secondary
Replica B

Secondary
Replica A

Master

Legend:

Control
Data

3

Client
2

step 14

5

6

6

7

Figure 2: Write Control and Data Flow

becomes unreachable or replies that it no longer holds
a lease.

3. The client pushes the data to all the replicas. A client
can do so in any order. Each chunkserver will store
the data in an internal LRU buffer cache until the
data is used or aged out. By decoupling the data flow
from the control flow, we can improve performance by
scheduling the expensive data flow based on the net-
work topology regardless of which chunkserver is the
primary. Section 3.2 discusses this further.

4. Once all the replicas have acknowledged receiving the
data, the client sends a write request to the primary.
The request identifies the data pushed earlier to all of
the replicas. The primary assigns consecutive serial
numbers to all the mutations it receives, possibly from
multiple clients, which provides the necessary serial-
ization. It applies the mutation to its own local state
in serial number order.

5. The primary forwards the write request to all sec-
ondary replicas. Each secondary replica applies mu-
tations in the same serial number order assigned by
the primary.

6. The secondaries all reply to the primary indicating
that they have completed the operation.

7. The primary replies to the client. Any errors encoun-
tered at any of the replicas are reported to the client.
In case of errors, the write may have succeeded at the
primary and an arbitrary subset of the secondary repli-
cas. (If it had failed at the primary, it would not
have been assigned a serial number and forwarded.)
The client request is considered to have failed, and the
modified region is left in an inconsistent state. Our
client code handles such errors by retrying the failed
mutation. It will make a few attempts at steps (3)
through (7) before falling back to a retry from the be-
ginning of the write.

If a write by the application is large or straddles a chunk
boundary, GFS client code breaks it down into multiple
write operations. They all follow the control flow described
above but may be interleaved with and overwritten by con-
current operations from other clients. Therefore, the shared

file region may end up containing fragments from different
clients, although the replicas will be identical because the in-
dividual operations are completed successfully in the same
order on all replicas. This leaves the file region in consistent
but undefined state as noted in Section 2.7.

3.2 Data Flow
We decouple the flow of data from the flow of control to

use the network efficiently. While control flows from the
client to the primary and then to all secondaries, data is
pushed linearly along a carefully picked chain of chunkservers
in a pipelined fashion. Our goals are to fully utilize each
machine’s network bandwidth, avoid network bottlenecks
and high-latency links, and minimize the latency to push
through all the data.

To fully utilize each machine’s network bandwidth, the
data is pushed linearly along a chain of chunkservers rather
than distributed in some other topology (e.g., tree). Thus,
each machine’s full outbound bandwidth is used to trans-
fer the data as fast as possible rather than divided among
multiple recipients.

To avoid network bottlenecks and high-latency links (e.g.,
inter-switch links are often both) as much as possible, each
machine forwards the data to the “closest” machine in the
network topology that has not received it. Suppose the
client is pushing data to chunkservers S1 through S4. It
sends the data to the closest chunkserver, say S1. S1 for-
wards it to the closest chunkserver S2 through S4 closest to
S1, say S2. Similarly, S2 forwards it to S3 or S4, whichever
is closer to S2, and so on. Our network topology is simple
enough that “distances” can be accurately estimated from
IP addresses.

Finally, we minimize latency by pipelining the data trans-
fer over TCP connections. Once a chunkserver receives some
data, it starts forwarding immediately. Pipelining is espe-
cially helpful to us because we use a switched network with
full-duplex links. Sending the data immediately does not
reduce the receive rate. Without network congestion, the
ideal elapsed time for transferring B bytes to R replicas is
B/T + RL where T is the network throughput and L is la-
tency to transfer bytes between two machines. Our network
links are typically 100 Mbps (T ), and L is far below 1 ms.
Therefore, 1 MB can ideally be distributed in about 80 ms.

3.3 Atomic Record Appends
GFS provides an atomic append operation called record

append. In a traditional write, the client specifies the off-
set at which data is to be written. Concurrent writes to
the same region are not serializable: the region may end up
containing data fragments from multiple clients. In a record
append, however, the client specifies only the data. GFS
appends it to the file at least once atomically (i.e., as one
continuous sequence of bytes) at an offset of GFS’s choosing
and returns that offset to the client. This is similar to writ-
ing to a file opened in O APPEND mode in Unix without the
race conditions when multiple writers do so concurrently.

Record append is heavily used by our distributed applica-
tions in which many clients on different machines append
to the same file concurrently. Clients would need addi-
tional complicated and expensive synchronization, for ex-
ample through a distributed lock manager, if they do so
with traditional writes. In our workloads, such files often
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Actual use

• Name service 

• Google’s primary internal name service!

• GFS, MapReduce, Bigtable all use Chubby



More reading
• the Google file system, 2003 - Ghemawat et al 

• Paxos made live, 2001- Chandra et al 

• The Chubby lock service for loosely-coupled 
distributed systems, 2006 - Mike Burrows 

• https://www.hakkalabs.co/articles/chubby-lock-
service-loosely-coupled-distributed-systems

https://www.hakkalabs.co/articles/chubby-lock-service-loosely-coupled-distributed-systems

