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Introduction

I Problem: reaching agreement among remote processes (You
can think of consensus as “voting” for a value.);

I Example: Different processes have to decide wether to insert a
value into a database, result of a transaction they concurred to
process, or not, in order to preserve the database consistency;

I In case of failure of one or more processes, or, in the extreme
case, injection of one or more malicious processes, the
question is wether or not is possible to ensure a certain grade
of ”resilience“, or ensure, at least, a tolerance to a certain
number of faults;

I The result is quite surprising: No completely asynchronous
consensus protocol can tolerate even a single
unannounced process death.



Preview of the results

I The results are quite surprising: No completely
asynchronous consensus protocol can tolerate even a
single unannounced process death.

I Even in the absence of Byzantine processes (from now on an
assumption), the stopping of a single process at an
inopportune time can cause any distributed commit protocol
to fail to reach agreement;

I This confirmed what was believed at the time, that
asynchronous commit protocols have a ”window of
vulnerability” i.e. an interval of time during the execution of
the algorithm in which the delay or inaccesibility of a single
process can cause an infinite loop in the entire algorithm.



Assumptions I

I Every process starts with an initial value in {0, 1};
I A nonfaulty process decides on a value, and enters a decision

state;

I All nonfaulty processes are required to choose the same value;

I Only some of the processes are required to choose the same
value (in order to broaden the scope of the proof);

I Both 0 and 1 are possible decision values;

I Processes are modeled as automata, which communicate by
meaning of messages;

I The atomic step for a process is:
I attempt to receive a message
I perform local computation based on wether or not a message

was delivered to it
I send a finite set of messages to other processes as a broadcast.



Assumptions II

I Every message is eventually delivered as long as the
destination makes infinitely many attempts to receive, but
messages can be delayed arbitrarily long and delivered out of
order.



Model definition I

I N ≥ 2 processors which communicate by sending messages;

I A message is a pair (p,m) where p is the processor the
message is intended for, and m is the contents of the message.

I Message buffer: multiset storing messages;
I buffer.send(p,m) places the message (p,m) in the message

buffer;
I buffer.receive(p) either returns a message for processor p (and

removes it from the message buffer) or the special value θ,
which does nothing;

I A configuration is defined as the internal state of all of the
processors – the current step in the algorithm that they are
executing and the contents of their memory – together with
the contents of the message buffer.

I The system moves from one configuration to the next by a
step which consists of a processor p performing receive(p) and
moving to another internal state.



Model definition II

I A particular execution, defined by a possibly infinite sequence
of events from a starting configuration C is called a schedule
and the sequence of steps taken to realise the schedule is a
run.

I We say that a run is deciding provided that some process
eventually decides according to the properties of consensus,
and that a consensus protocol is totally correct if every
admissible run is a deciding run.



Proof

I The basic idea is to show circumstances under which the
protocol remains forever indecisive;

I We call the configurations that may lead to either decision
value bivalent, and configurations that will only result in one
value 0-valent or 1-valent.

I Two main lemmas:

1. Show that there is some initial configuration in which the
decision is not predetermined, but in fact arrived as a result of
the sequence of steps taken and the occurrence of any failure.

2. If you delay a message that is pending any amount from one
event to arbitrarily many, there will be one configuration in
which you receive that message and end up in a bivalent state.



First lemma I

Theorem
The protocol P has a bivalent initial configuration;

Proof:

I Suppose that the opposite was true – that all initial
configurations have predetermined executions.

I Each configuration is uniquely determined by the set of initial
values in the processors.

I We can order these values in a chain where two configurations
are next to each other if they differ by only one value, so the
only difference between two adjacent configurations is the
starting value of one processor.

I At some point along this chain, a 0-deciding initial
configuration must be next to a 1-deciding one, and therefore
they must differ by only one initial value.



First lemma II
I Call the 0-deciding configuration C0 and the 1-deciding

configuration C1. Call the processor whose initial value is
different in both p.

I Now, from C0 there must be a run that decides 0 even if p
fails initially – because we allow one processor to fail.

I Therefore p neither sends nor receives any messages, so its
initial value cannot be observed by the rest of the processors,
one of whom must eventually decide 0.

I This run can also be made from C1. Because the
configurations of C0 and C1 are exactly the same, except for
the value at p which can’t contribute anything to the run
because p has failed, any sequence of steps that C0 may take
can also be taken by C1.

I But if they take exactly the same sequence of steps, then the
eventual decision taken must be the same for both
configurations.



First lemma III

I This contradicts our assumption that the result of the
consensus algorithm is predetermined only by the initial
configuration.

I So either one (or possibly both) of these configurations can
potentially decide 0 or 1 and the eventual result depends
on the pattern of failures and message deliveries.



Second lemma I

Let C be a bivalent configuration and let e=(p,m) be some event
that is applicable to C. Let C be the set of configurations
reachable from C without applying e, and let D be the set of
configurations resulting from applying e to configurations in C.

Theorem
D contains a bivalent configuration.

Proof:

I Assume that D contains no bivalent configurations.



Second lemma II

Figure : Proof that D must contain both 0- and 1-valent configurations if it contains no bivalent
configuration (http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/)

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/


Second lemma III

Figure : Proof that D0 must be bivalent if the two states preceding D1 are separated by messages

intended for different processes; C0 and C1 are adjacent neighbours; e=(p,m), e’=(p’,m’) and p′ 6= p.
(http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/)

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/


Second lemma IV

Figure : Proof that no deciding run from C0 exists if D contains only univalent configurations, and

both messages preceding D1 are delivered to the same host (i.e. p′ = p).
(http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/)

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/


Second lemma V

I So, by contradiction, we have shown that D must contain a
bivalent configuration.



Lemmas together I

I The final step is to show that any deciding run also allows the
construction of an infinite non-deciding run.

I Start from a bivalent initial configuration C0 (which exists as
a result of the first lemma).

I To make the run admissible, place the processors in the
system in a queue and have them receive messages in queue
order, being placed at the back of the queue when they are
done. This ensures that every message is eventually delivered.

I Let e=(p,m) be the earliest message to the first processor in
the queue; possibly a null message.

I Then by the second lemma we can reach a bivalent
configuration C1 reachable from C0 where e is the last
message received.

I Similarly, we can reach another bivalent configuration C2 from
C1 by the same argument. And this may continue for ever.



Lemmas together II

I This run is admissible, but never reaches a decision, and it
follows that the protocol is not totally correct.
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