Event ordering in a
Distributed System

SHUBHABRATA SEN

Outline

» Introduction to distributed computing

» Event ordering in distributed systems

» The ‘happened-before’ relation

» The ‘happened-before’ relation with logical clocks
» Ordering events using the clock conditions

» The event ordering algorithm

» Limitations

» Avoiding anomalous behaviour

» Ordering events using physical clocks

» Conclusion

Distributed Computing

) Distributed computing — a field of computer science that studies distributed systems. A
distributed system is a software system in which components located on networked computers
communicate and coordinate their actions by passing messages

J Characteristics of distributed systems — concurrency of components, lack of a global clock,
independent failure of components, structure of the system is not known apriori, and limited
system view of each system component

) Examples and applications
) Telephone/Cellular Networks
) Internet
] P2P networks
) Massively Multiplayer Online games
] Distributed databases

Event ordering in distributed systems

) Leslie Lamport - Time, clocks, and the ordering of events in a distributed system (1978).

) Distributed computing model — multiple network components interacting and communicating
with each other via message passing

) Distributed systems are asynchronous by nature

) Key challenge — how to order or sequence the events in a distributed system to ensure that
the final outcome is correct/consistent

) Example — sequencing booking requests in a flight reservation system
. Time based sequencing of events fundamental to human nature
) Notion of time related to a personal perception

) Does the same assumption hold in a distributed system ?

Event ordering in distributed systems

) Reliance on multiple clocks of different system components to observe time can lead to
contention issues

) Standardization of the notion of ‘time’ and which event ‘happens-before’ another event is an
essential design requirement in a distributed system

) Standard notion of the ‘happened-before’ relation — event A happened before event B implies
event A occurs at an earlier time than event B

) Justification is based on the physical theories of time

IDefining the ‘happened-before’ relation without using physical clocks

The ‘happened-before’ relation

) System description — A collection of processes with each process comprising of a sequence of
events

) Events — execution of a subprogram, receiving and sending messages

) Events of a process form a sequence where event a occurs before event b if event a happens
before event b

] Defining the “happened before” relation “->”
1 If a and b are events in the same process and a comes before b, thena 2> b

) If a denotes a message sent by one process and b denotes the receipt of the same message by another
process, thena 2> b

JdIifa—>bandb—2>c,thena—>c

. “>" represents a partial ordering on the set of events in the system and also reflects the
causal relationship between events

Visualizing the ‘happened-before’
relation

o, L ('
[] [oy
(4] [[
[k] L] A
r L] E
g = g
By Az Ta
| e
|:'3T q5 L r3
~riliny
!
Pa * Y3 Ta
» O
Hy 4y Ty

REFERENCE - LAMPORT, L. (1978). TIME, CLOCKS, AND THE ORDERING OF EVENTS IN A

DISTRIBUTED SYSTEM. COMMUNICATIONS OF THE ACM, 21(7), 558-565

The ‘happened-before’ relation with
logical clocks

) Logical clocks — abstract way of assigning a number to an event where the number denotes
the time of occurrence of the event

J A clock C is defined for a process P, which assigns a number C(a) to any event a in that process

) The function C represents the entire system of clocks in the system and assigns numbers to
events within the different processes

) Logical clocks implemented using counters with no relation to the physical time
) Evaluating the correctness of a system based on logical clocks

] Correctness definition based on the order in which events occur

The ‘happened-before” with logical clocks

J Clock Condition — For any events a, b if a 2 b then C(a) < C(b)

) Satisfying the Clock condition
J C1. If aand b are events in process P, and a comes before b, then C,(a) < Ci(b)

J C2. If ais the sending of a message by process P, and b is the reception of that message by process P,
then C(a) < C(b)

) Implementation rules to ensure that a system of clocks satisfy the clock condition
J IR1 — Each process P, increments its logical clock C, between the occurrence of successive events

J To satisfy C2, each message m should contain a timestamp T that indicates the time when the
message was sent

J IR2 (a) — If an event a in process P, sends a message m, then T, = C,(a)

J IR2 (b) — When process P, receives a message, it sets the value of its clock C; to greater than or equal to
its present value and greater than T

ogical clocks visualization

0 0 0 0 0 0

6 \ i 11 6 \ 8 11
12 16 22 12 16 22
18 24 \ 33 18 24 \ 33
24 32 44 24 32 44
30 40 55 30 40 55
36 48 / 66 36 48 g
42 56 77 42 67 | 77
48 / 64 88 48 / 75 88
54 72 99 76 ¥ 83 99
60 80 110 82 91 110

Processes with independent clocks Corrected clocks using Lamports algorithm

Ordering events using the clock
conditions

) Use the concept of logical clocks to order the events according to the time they occur

) In case there is a tie between the clock times of two processes in the ordering, use an arbitrary
ordering “<“ (such as process priority) to break the ties

) Define a new “happened-before” relation “=>" with the following rules - If a is an event in
process P, and b is an event in process P,, then a => b if and only if either of the two conditions
hold

 C(a) < C(b)
1 C(a) =C(b)and P, <P,
L “=>" completes the “happened-before” partial order relation to a total order relation

) The “=>" ordering is dependent on the system of clocks

Ordering events using the clock
conditions

) Usefulness of the event ordering algorithm — solving the mutual exclusion problem

) Synchronizing the access of a single shared resource among multiple processes

. The algorithm should satisfy the following rules

) A resource granted to a process must be released before granting it to another process
] For a given resource, requests must be granted in the order in which they were made

) Assuming each process releases the resource granted to it at some point, all requests to that
resource can be fulfilled

Ordering events using the clock
conditions

) Non-trivial problem — A centralized scheduler granting requests in the order in which they are
received will not always work correctly

Scheduler
/ Request resource R
Timing delay
Request resource R /
Process P1 g Process P2

Send Message

The event ordering algorithm

J Each process maintains a request queue initially containing a message of the form T,:P,

J P, —the process initially holding the resource
J T, —a value less than the initial values of all the other process clocks

) The algorithm comprises of a collection of rules that govern the synchronization between
different processes while accessing a single shared resource

] Resource request rules

JThe requesting process P, sends a message T, :P, to all the other processes and adds this
message to its request queue

JWhen a process P, receives this message, it adds it to its own request queue and sends a
timestamped acknowledgement to P,

The event ordering algorithm

) Resource Release rules

J Process P, removes message T, :P, from its request queue and sends a timestamped release
resource message to the other processes

] When a process P; receives a release resource message, it removes the corresponding T :P,
request resource message from its request queue

J Resource granting rules for process P,

J There is a request message T, :P, in its request queue and it is ordered before any other
request in the queue using the total order ‘happened-before’ relation “=>"

J P, has received a message from every other process timestamped later than T
) The ordering algorithm is distributed and does not require a centralized scheduler

) Can be extended to define a suitable synchronization behaviour for distributed systems

Limitations

J Requires the active participation of all the processes for successful completion

) All message exchanges between the processes must occur without failures
) If a single process stops working, synchronization problems will occur

. The use of logical clocks may not be feasible in real world scenarios and result in anomalous
behaviours

) Person A issues request A on Computer B
) Person A calls friend in another city to issue another request B on Computer B

) Request B receives lower timestamp and is ordered before A — Violation of “happened-before”
relation

Avoiding anomalous behaviour

) Define a set of events “L” that comprise of the system events as well as relevant external
events

J “happened-before” relation for set L is defined by “>”

J Avoiding anomalies
) Explicitly introduce the additional information about the ordering =2
. Construct system of clocks satisfying the strong clock condition

) Strong clock condition — For any events a, b in L : if a 2 b then C(a) < C(b)
) The strong clock condition is not generally satisfied using the system of logical clocks

. Physical clocks need to be used to eliminate anomalous behaviour

Event ordering with physical Clocks

J Introduction of physical clocks into the existing system setup — C.(t) denotes the reading of clock
C. at physical time t

J Assume clocks run continuously, then dC(t)/dt represents the rate at which the clock runs at time
T

J For a true physical clock, dC,(t)/dt = 1 for all t

J PC1: There exists a constant k << 1 such that forall i : | dC(t)/dt— 1] <k
) Kk <10° for crystal controlled clocks

1 All clocks must be synchronized so that C(t) = C(t) for all i, jand t

1 PC2: There exists a sufficiently small constant € such that for all i,j: | C(t) - G(t)| <€

Event ordering with physical Clocks

) Let p be less than the shortest transmission time for inter process messages

J To avoid anomalous behavior: C(t +u) - Cj(t) >0

J Based on Condition 1: C(t +u) - C(t) > (1-k) p

J Using Condition 2 it can be shown that: C(t + p) - C(t)>0ife<(1-«k)u
) Implementation rules to ensure that condition 2 holds

J Let m be a message sent at physical time t and received at time t’. Definev_ =t' -t as the
total message delay

J Assume receiving process knows a minimum delay p,, such that p,, <v,,

J €. =v,—u, defined as the unpredictable delay of the message

Event ordering with physical Clocks

J IRY —For each i, if process P, does not receive a message at time t, then C, is differentiable at t
and dC(t)/dt >0

1 IR2’ - On receiving a message m at time t’, process P, sets C, (t’) equal to Max(Cj(t’), T, +H,)
) Satisfying the physical clock condition PC2

J System of process described by a directed graph where an edge from P, to P, represents a
communication line

J A message is sent over this edge every T seconds if for any t, P, sends at least one message to
P, between physical timestand t + T

) Diameter of the graph d is the smallest number d such that for a pair of processes (P, Py,
there is a path from P, to P, having at most d edges

Event ordering with physical Clocks

) Theorem - Given a directed graph with diameter d that obeys rules IR1’ and IR2’, PC2 is
satisfied with e = d (2k T + €)

) Proof of the theorem is beyond the scope of this discussion

) A system of physical clocks that are synchronized using the preceding set of rules and
conditions can be used to order the events in a distributed system

Conclusion

) Solving the problem of synchronizing the use of a shared resource among events in different
processes in a distributed system is a non-trivial problem

J The use of the “happened-before” relation to establish an ordering among the different events

) An invariant partial ordering can be established amongst the events using the concept of
logical clocks

) The partial ordering can be extended to a total ordering to solve the synchronization problem

) Anomalous behaviour can occur as a result of using logical clocks

) In order to prevent the anomalies, properly synchronized physical clocks can be used

