Distributed Computing |

Jorn W. Janneck

Computer Science Dept.
Lund University

Introduction to Cloud Computing

what we try to accomplish

basic terminology in distributed computing

some fundamental concepts and
ways of thinking about distributed systems

some “classical” results and papers

shed some light (?) on the relationship between
distributed systems and cloud computing

Y oY o .Y 7.y

- S
Nancy A. Lynclz

Distributed

[0]
=
—=
=
Femd
=
o7 8]
s

Nancy A. Lynch
Distributed Algorithms
Morgan Kaufmann, 1996

distributed computing

A distributed system is one in which the failure of a computer
you didn't even know existed can render your own computer
unusable.

Leslie Lamport
email communication
1987

Distributed computations are concurrent programs
In which processes communicate by message passing.

Gregory R. Andrews
“Paradigms for Process Interaction in Distributed Programs”
ACM Computing Surveys 23(1), 1991

concurrent programs

PE

PE

Shared Memory

Memory| |Memory| [Memory| [Memory
X /N N S
PE PE PE PE

the trouble with distributed computing

“fallacies of distributed computing”

1) The network is reliable.

N

Latency is zero.

w

Bandwidth is infinite.

N

The network is secure.

o O

There is one administrator.
7
8

Transport cost is zero.

(
(2)

(3)

(4)

(5) Topology doesn't change.

(6)

(7)

(8) The network is homogeneous.

Many things can go wrong in a distributed system.
(1) How to detect that stuff went wrong?

(2) What to do about it?
(3) Can we characterize the resiliency of a system?

message passing

/,,.,
(

process P
process Q
process R

(source: Leslie Lamport)

Don’t show
_ photos to Bob /

post photo Y,

e

Alice @home .. @ O

Alice @phone \
Bob

(source: Marc Shapiro)

distributed computing

things being looked at things that usually aren't
— the algorithm(s) of the — the nature of the
processes interconnect
— the messages — time / speed [*]
— order, causality — location of processes
— whether delivery is — data formats
reliable
— whether processes crash
(and how)

— whether processes are
“nice”

synchronous vs asynchronous (systems)

synchronous systems:

known upper bounds on time for computation and message delivery
or access to global clock

or execution in synchronized rounds

asynchronous systems:
no upper bounds on time for computation and message delivery

partially synchronous systems:
anything in between, e.g.

unknown upper bounds on time for computation and message delivery
almost-synchronized clocks

bounded-drift local clocks

approximate bounds (on execution/message delivery time)

bound on message delay, bound on relative process speeds

bound on the delay ratio between fastest and slowest message at any time
(©-model)

ways in which things go wrong

failure classes (partial)
— crash-failstop
— crash-recover
— omission
— timing

— Byzantine

10

failure detector (example of distributed algorithm)

A failure detector is (part of) a process that
determines whether other processes have failed.

Strong completeness
Every faulty process is eventually permanently suspected
by every non-faulty process.

Weak completeness
Every faulty process is eventually permanently suspected
by some non-faulty process.

Strong accuracy
No process is suspected (by anybody) before it crashes.
Weak accuracy
Some non-faulty process is never suspected.
Eventual strong accuracy
After some initial period of confusion, no process is suspected before it crashes.
This can be simplified to say that no non-faulty process is suspected after
some time, since we can take end of the initial period of chaos as the time
at which the last crash occurs.
Eventual weak accuracy
After some initial period of confusion, some non-faulty process is never suspected.

source: James Aspnes, Yale 11

some kinds of distributed algorithms

e failure detectors

* Cconsensus

 |eader election

e synchronizers

e resource allocation, mutual exclusion

12

Operating R. Stockion Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

A distributed system consists of a collection of distinct
processes which are spatially separated. and which com-
municate with one another by exchanging messages. A
nerwork of interconnected computers, such as the ARPA
net, is a distributed system. A single computer ean also
be viewed as a distributed system in which the central
control unit. the memory units, and the input-output
channels are separate processes. A system is distributed
if the message transmission delay is not negligible com-
pared 1o the time between events in a single process.

‘We will concern ourselves primarily with systems of
spatially separated computers. However, many of our
remarks will apply more generally. In particular, a mul-
tiprocessing sysiem on a single computer involves prob-
lems similar to those of a distributed system because of
the unpredictable order in which certain events can
oceur.

ib

The concept of one event happening before another
in a distributed system is examined. and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for wlvilg synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systents,
computer networks, clock synchronization, mltiprocess
systems

CR Categories: 432, 529

Introduction

The concept of time is fundamental 1o our way of
thinking, It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 3:15 if it occurred gfier our clock read 315
and before it read 3:16. The concept of the temporal
ordering of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made before the flight is filled. However, we will see that
this concept must be carefully reexamined when consid-
ering events in a distributed system.

PeTmisNion (0 make [417 W 7 1esching or research of all
or part of this material is granted to individual readers &nd 1o oRprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication. w0 s date of issus, and
10 the fact that reprinting privileges were gramed by permission of the
Assotiation for Computing Machinery. To oihervise reprini a figure,
table. other substantial excerpt, or the cntire work requires specific
permission a3 does republieation. or systematic or multiple reproduc-
tian.

This work was supponied by the Advanced Rescarch Projects
Agency of the Depanment of Defense and Rome Air Development
Center. It was monitored by Rome Air Development Center under
:nnuw number F 30602-76-C-0084

address: Computer Scicnce Laboralery. SRI Interna-
narul 533 Ravenswood Ave.. Menlo Park CA $4025.
© 1978 ACM (001078278 /0700-0354 300,75

558

In a di: system, it is
say that one of two events occurred first. The r:huun
“happened before™ is therefore only a partial ordering
of the events in the system. We have found that problems
often arise because people are not fully aware of this fact
and its implications.
In this paper, we discuss the partial ordering defined
bylh: "happen:d before” relation, and give a distributed
for itioa total ordering
of all the events. This al;wtlnm can provide a useful
for system. We
1lll|slrxn= its use with a ilmple mmhod for solving syn-
problems. L behav-
ior can occur if the ordering obtained by this algorithm
differs from that perceived by the user. This can be
avoided by introducing real, physical clocks. We describe
a simple method for synchronizing these clocks, and
derive an upper bound on how far out of synchrony they
can drift.

The Partial Ordering

Most people would probably say that an event a
happened before an event b if a happened at an earlier
time than b. They might justify this definition in terms
of physical theories of time. However, if a system is to
meet a specification correctly, then that specification
must be given in terms of events observable within the
system. If the specification is in terms of physical time.
then the system must contain real clocks. Even if it does
contain real clocks, there is still the problem that such
clocks are not perfectly accurate and do not keep precise
physical time. We will therefore define the “happened
before™ relation without using physical clocks.

We begin by defining our system more precisely. We
assume that the system is composed of a collection of
processes. Each process consists of a sequence of events.
Depending upon the application. the execution of a
subprogram on a computer could be cne event, or the
execution of a single machine instruction could be one

Communications July 1978
of Volume 21
the ACM Mumer 1

Shubh: Lamport 1978

today's double feature

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yaie Universicy, New Haven, Conneviicui

NANCY A. LYNCH

Massachusets Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL §. PATERSON

University of Warwick, Coventry, England

Abgtract. The consensus problem involves an asynchronous system of processes, some of which may he
unreliable, The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By wav of contrast. solutions are known for the synchronous case, the “Byzantine Generals™
problem.

‘Categories and Subject Descriptors: C.2.2 |Cmnpw|er-Commumhnn Networks]: Netwark Protocols-

protocol architecture; C.2.4 [Computer-Ci : Distributed distribued

applications; distribuled dutabases; network operating systems; C.4 [Performance of Systems]: Reliabil-

ity, Availability, and ity .12 [ion by Abstract Devices): Modes of Computation—
H.2.4 [Dutalbse distributed systemns; processing

General Terms: Algorithms, Reliability, Theory
Additional Key Words and Phrases: Agreement problem. asvnchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

1. Introduction

The problem of reaching agreement among remote processes is one of the most
fundamental problems in distributed computing and is at the core of many

Editing of this paper was performed by guest editor . L. Graham. The Editor-in-Chief of JACM did
nut participate in the processing of the paper.

This work was supported in part by the Office of Naval Research under Contract NODO14-82-K-0154,
by the Office of Army Research under Contract DAAG29-79-C-0155, and by the National Science
Foundativn unde Crauts MCS-7924370 aud MCS-8116678.

This work was originally presented at the 2nd ACM Symposium on Principles of Database Systems,
March 1983.

Authors’ present addresses: M. J. Fischer, Department of Computer Science, Y ale University, F.O. Box
2158, Yale Station, New Haven, CT 06520; N, A. Lynch, Laboratery for Computer Science, Massachu-
setts Institute of Technology, 545 Technology Square, Cambridge, MA 02139; M. . Paterson, Depart-
ment of Computer Scicacs, University of Warwick, Coventry CV4 7AL, England

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its datc appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission,
@ 1985 ACM 0004-5411/85/0400-0374 $00.75

Journal of the Asscciation for Computing Machinery, Vol. 32, No. 2, Apeil 1985, po. 374-382.

Antonio: FLP 1985

13

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

