
Distributed Computing IDistributed Computing I

Jörn W. Janneck

Computer Science Dept.

Lund University

Introduction to Cloud Computing

2

what we try to accomplish

basic terminology in distributed computing

some fundamental concepts and
ways of thinking about distributed systems

some “classical” results and papers

shed some light (?) on the relationship between
distributed systems and cloud computing

3

Nancy A. Lynch
Distributed Algorithms

Morgan Kaufmann, 1996

4

distributed computing

Distributed computations are concurrent programs
in which processes communicate by message passing.

Gregory R. Andrews
“Paradigms for Process Interaction in Distributed Programs”

ACM Computing Surveys 23(1), 1991

A distributed system is one in which the failure of a computer
you didn't even know existed can render your own computer
unusable.

Leslie Lamport
email communication

1987

5

concurrent programs

6

the trouble with distributed computing

“fallacies of distributed computing”

(1) The network is reliable.

(2) Latency is zero.

(3) Bandwidth is infinite.

(4) The network is secure.

(5) Topology doesn't change.

(6) There is one administrator.

(7) Transport cost is zero.

(8) The network is homogeneous.

Many things can go wrong in a distributed system.

(1) How to detect that stuff went wrong?
(2) What to do about it?
(3) Can we characterize the resiliency of a system?

7

message passing

(source: Marc Shapiro)

(source: Leslie Lamport)

8

distributed computing

things being looked at

– the algorithm(s) of the
processes

– the messages

– order, causality

– whether delivery is
reliable

– whether processes crash
(and how)

– whether processes are
“nice”

things that usually aren't

– the nature of the
interconnect

– time / speed [*]

– location of processes

– data formats

9

synchronous vs asynchronous (systems)

synchronous systems:
known upper bounds on time for computation and message delivery
or access to global clock
or execution in synchronized rounds

asynchronous systems:
no upper bounds on time for computation and message delivery

partially synchronous systems:
anything in between, e.g.

• unknown upper bounds on time for computation and message delivery
• almost-synchronized clocks
• bounded-drift local clocks
• approximate bounds (on execution/message delivery time)
• bound on message delay, bound on relative process speeds
• bound on the delay ratio between fastest and slowest message at any time

(Θ-model)

10

ways in which things go wrong

failure classes (partial)

– crash-failstop

– crash-recover

– omission

– timing

– Byzantine

11

failure detector (example of distributed algorithm)

A failure detector is (part of) a process that
determines whether other processes have failed.

Strong completeness
Every faulty process is eventually permanently suspected
by every non-faulty process.

Weak completeness
Every faulty process is eventually permanently suspected
by some non-faulty process.

Strong accuracy
No process is suspected (by anybody) before it crashes.

Weak accuracy
Some non-faulty process is never suspected.

Eventual strong accuracy
After some initial period of confusion, no process is suspected before it crashes.
This can be simplified to say that no non-faulty process is suspected after
some time, since we can take end of the initial period of chaos as the time
at which the last crash occurs.

Eventual weak accuracy
After some initial period of confusion, some non-faulty process is never suspected.

source: James Aspnes, Yale

12

some kinds of distributed algorithms

• failure detectors

• consensus

• leader election

• synchronizers

• resource allocation, mutual exclusion

13

today's double feature

Shubh: Lamport 1978 Antonio: FLP 1985

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

