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Algebraic Riccati Equations
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Anders Rantzer 2015 Robust Control, Lecture 6



The H∞ Optimization Problem

P
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P21 P22









Tzw = Fl(P, K)

Optimal control:

min
K−stab

qTzwq∞

Suboptimal control: Given γ find an internally stabilizing controller K

such that

qTzwq∞ < γ.

The optimal control problem is solved by iterating γ in the suboptimal

problem.
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H∞ Optimization in Frequency Domain

A good exposition can be found in the book [Francis, 1987].

The Youla parameterization of all internally stabilizing controllers gives an

affine dependence of Tzw on the Youla parameter Q ∈ RH∞

Tzw = T1 − T2QT3, Tk ∈ RH∞

Thus the H∞ optimization problem becomes

min
Q∈RH∞

qT1 − T2QT3q∞

The optimization in Q is convex, but infinite-dimensional

Anders Rantzer 2015 Robust Control, Lecture 6



H∞ Optimization in Frequency Domain

In a special case, the H∞ optimization problem is equivalent to

min
F∈RH∞

qR− Fq∞ = dist(R, RH∞)

where R is unstable.

This problem of approximating an L∞ function by an H∞ function is a

classical problem from the beginning of the 20th century (Markov,

Caratheodory, Fejer, Nevanlinna, Pick, Sarason and many others). Nehari

solved it in 1957.
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State Space Solution: Recall LQ Control

If P satisfies the Riccati equation AT P + P A+ Q− P BBT P = 0,

then every solution to ẋ = Ax+ Bu with limt→∞ x(t) = 0 satisfies

∫∞

0

[xT Qx+ uTu]dt

=

∫∞

0

pu+ BT P xp2dt− 2

∫∞

0

(Ax+ Bu)T P xdt

=

∫∞

0

pu+ BT P xp2dt− 2

∫∞

0

ẋT P xdt

=

∫∞

0

pu+ BT P xp2dt−

∫∞

0

d

dt
[xT P x]dt

=

∫∞

0

pu+ BT P xp2dt+ x(0)T P x(0)

with the minimizing control law u = −BT P x.
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A Linear Quadratic Game

If X satisfies the Algebraic Riccati Equation

AT X + X A+ Q− X(Bu BT
u − Bw BT

w/γ
2)X = 0

then ẋ = Ax+ Buu+ Bww with x(0) = 0 gives

∫∞

0

[xT Qx+ uTu−γ 2wTw]dt

=

∫∞

0

pu+ BT
u X xp2dt−γ 2

∫∞

0

pw− BT
w X xp2dt

This can be viewed as a dynamic game between the player u, who tries to

minimize and w who tries to maximize.

The minimizing control law u = −BT
u X x gives

∫∞

0

[xT Qx+ uTu]dt ≤ γ 2

∫∞

0

wTwdt

so the gain from w to z = (Q1/2 x, u) is at most γ .
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Algebraic Riccati Equations

A∗X + X A+ X RX + Q = 0

where R = R∗, Q = Q∗.

The ARE is as important for control design as the

Lyapunov equation is for system analysis.

There are many solutions X = X∗ to ARE, the stabilizing one

(which makes A+ RX stable) is unique!

The ARE is a state space tool, which corresponds to factorization in

frequency domain (recall spectral factorization in LQ Control).

How do we solve it?
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Hamiltonian Matrix

Consider the 2n$ 2n matrix

H =









A R

−Q −A∗









.

Lemma: Eigenvalues of H are symmetric with respect to the imaginary

axis.

Proof: Introduce J =









0 −I

I 0









. Then J−1 HJ = −H∗, so λ is an

eigenvalue of H if and only if −λ̄ is.

In particular, if there are no purely imaginary eigenvalues then there are

precisely n stable and n unstable eigenvalues of H.
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Stable Invariant Subspace

Under assumption of no purely imaginary eigenvalues, let

T =









X1

X2









∈ R2n$n

be a basis of the stable n-dimensional invariant subspace. Equivalently

HT = TΛ for some stable matrix Λ ∈ Rn$n.

Lemma: If det(X1) ,= 0 then X = X2 X−1
1 is a stabilizing solution to the

ARE A∗X + X A+ X RX + Q = 0

Proof: We are to prove

1) X = X∗.

2) X satisfies the ARE.

3) A+ RX is stable.
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1) HT = TΛ [ T∗J HT = T∗JTΛ. The matrix J H is symmetric

then

T∗JTΛ = Λ∗T∗J∗T \ T∗JTΛ + Λ∗T∗JT = 0.

So T∗JT satisfies the Lyapunov equation and Λ is stable. Hence

T∗JT = 0, that is

X∗

2 X1 − X∗

1 X2 = 0 \ X∗ − X = 0.

2) & 3) Simple calculation gives

AX1 + RX2 = X1Λ,

−QX1 − A∗X2 = X2Λ.
\

A+ RX = X1Λ X−1
1

−Q− A∗X = X2Λ X−1
1 .

Thus A+ RX is stable and

X A+ X RX = X2Λ X1 = −Q− A∗X

which implies the ARE.
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How to solve the ARE

Under conditions

(H1) There are no pure imaginary eigenvalues of H.

(H2) det(X1) ,= 0 for some basis of stable invariant subspace.

we can find a stabilizing solution to ARE as follows:

1 Find a basis T for the stable invariant subspace, for example by

Schur decomposition. If (H1) holds, then it has the dimension n.

2 Partition T as

T =









X1

X2









.

(H2) holds for some basis iff it holds for all basis.

3 Build X = X2 X−1
1 .
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Notation

H ∈ dom(Ric) if (H1) and (H2) hold for H.

X = Ric(H) is the stabilizing solution to ARE.
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ARE for H∞ Optimal State Feedback

Theorem: Consider ẋ = Ax+ Buu+ Bww, x(0) = 0, where (A, Bu)
and (A, Bw) be stabilizable. Introduce the Hamiltonian

H0 =









A Bw BT
w/γ

2 − Bu BT
u

−Q −AT









.

Then, the following conditions are equivalent:

1 There exists a stabilizing control law with
∫∞

0
(xT Qx+ pup2)dt ≤ γ 2

∫∞
0
pwp2dt

2 H0 has no purely imaginary eigenvalues.

3 H0 ∈ dom(Ric).

Proof: The implication (3)[ (1) was proved on slide “A Linear Quadratic

Game”. For (2)\ (3), see [Zhou, p. 237].
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Output Feedback Assumptions

P

K

✲ ✲

✛

✲

w z

u y P =





A Bw Bu

Cz 0 Dzu

Cy Dyw 0





(A1) (A, Bw, Cz) is stabilizable and detectable,

(A2) (A, Bu, Cy) is stabilizable and detectable,

(A3) D∗
zu



Cz Dzu



 =


0 I


,

(A4)









Bw

Dyw









D∗
yw =









0

I









.
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State Space H∞ optimization

The solution involves two AREs with Hamiltonian matrices

H∞ =









A γ−2Bw B∗
w − BuB∗

u

−C∗
z Cz −A∗









J∞ =









A∗ γ−2C∗
z Cz − C∗

y Cy

−BwB∗
w −A









Theorem: There exists a stabilizing controller K such that qTzwq∞ < γ if

and only if the following three conditions hold:

1 H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0,

2 J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0,

3 ρ(X∞Y∞) < γ 2.
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Moreover, one such controller is

Ksub(s) =

[

Â∞ −Z∞L∞
F∞ 0

]

where

Â∞ = A+γ−2Bw B∗

w X∞ + Bu F∞ + Z∞L∞Cy,

F∞ = −B∗

u X∞, L∞ = −Y∞C∗

y ,

Z∞ = (I −γ−2Y∞X∞)
−1.

Furthermore, the set of all stabilizing controllers such that qTwzq∞ < γ

can be explicitly obtained as lower LFT (see [Zhou,p. 271]).

[Doyle J., Glover K., Khargonekar P., Francis B., State Space Solution to

Standard H2 and H∞ Control Problems, IEEE Trans. on AC 34 (1989)

831–847.]
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Idea of Proof

The dynamic game viewpoint gives a solution in the case of full information,

where both state and disturbance are measurable. This gives the first ARE.

This can be combined with a “worst case observer”, finding the smallest

disturbance compatible with available measurements. This gives the

second ARE.

Combining the full information solution with the worst case observer,

solves the dynamc game problem with limited measurement information,

provided that the spectral radius condition holds.
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What have we learned so far?

H∞ optimization is fundamental problem for robust synthesis.

A dynamic game between controller and disturbance

The state space approach gives easily implementable conditions and

formulas.

The Algebraic Riccati Equation is the main computational tool.

Enter LMIs !
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Control Synthesis using LMIs

Dullerud+Paganini, A course in Robust Control Theory, Ch7.

LMI for H2 optimal state feedback

The KYP lemma

LMI for H∞ optimal state feedback

Matrix elimination lemma

LMI for H∞ optimal state feedback
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Stationary Stochastic Processes

Fact: If A is Hurwitz and w is white noise with intensity I then the

stationary solution to ẋ = Ax+ Bw has covariance ExxT = X

satisfying

AX + X AT + BBT = 0

(A more correct way of writing the stochastic differential equation is

dx = Axdt+ Bdv)
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H2 optimal state feedback

Problem: Given ẋ = Ax+ Bww+ Buu find a stabilizing control law

u = K x that mininizes E(pxp2 + pup2).

Solution: Closed loop system is ẋ = (A+ Bu K)x+ Bww, so

X = ExxT satisfies

(A+ Bu K)X + X(A+ Bu K)T + Bw BT
w = 0

This is a linear constraint on (X, Y ) where Y := K X .

Hence we have the convex problem:

Minimize trace(X) + trace(Y X−1Y T)
subject to X > 0 and AX + BuY + (AX + BuY )T + Bw BT

w = 0.
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The KYP lemma

Given A, B and M = MT where A has no eigenvalues on imag. axis.

The following are equivalent

(i)

[

(iω I − A))−1 B

I

]∗

M

[

(iω I − A))−1B

I

]

< 0, ∀ω

(ii) There exists P = PTsuch that

M +

[

AT P + P A P B

B∗P 0

]

< 0

The KYP is a classical result connecting frequency domain to time domain.

Proof is nontrivial, and we will skip it here.
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Final result: LMIs for The Output Feedback Case

A controller that gives qMclq∞ < 1 exists iff there exist symmetric

matrices X > 0, Y > 0 with

[

X I

I Y

]

> 0 such that

[

No 0

0 I

]T




AT X + X A X B1 CT
1

BT
1 X −I DT

11

C1 D11 −I





[

No 0

0 I

]

< 0

[

Nc 0

0 I

]T




AY + Y AT YCT
1 B1

C1Y −I D11

BT
1 DT

11 −I





[

Nc 0

0 I

]

< 0

where No, Nc are full rank matrices with

ImNo = Ker
[

C2 D21

]

,

ImNc = Ker
[

BT
2 DT

12

]
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Comparison to Riccati Approach

More expensive to solve LMIs than AREs

Fewer assumptions

Can introduce sparsenenss constraints (conservative solution)

H2 and H∞ specifications can be merged
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Risk-sensitive Optimal Control (LEQG)

Peter Whittle, Risk-sensitive Optimal Control (1990)

The risk-sensitive optimal controller includes the H2 and H∞ control

problem as special cases.

Instead of minimizing J = E(C) where

C =
T

∑

0

[

x

u

] [

Q1 Q12

Q21 Q2

] [

x

u

]

we choose to minimize

Jθ = −
2

θ
log (E (exp (−θC/2)))
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Risk-sensitive Optimal Control

A Taylor-expansion gives

Jθ = E(C) −
θ

4
var(C) + O(θ 2)

For θ = 0 we obtain the risk-neutral H2 (LQG) case. Variations of the

random cost C is seen as advantageous in the case θ > 0 (risk-seeking)

and disadvantageous if θ < 0 (risk-adverse).

θ gives some freedom how to judge variance of expected cost.

There is a negative value θc so that when θ < θc, the cost Jθ will be

infinite.

In fact, one can prove that

θc = −γ 2
o

where γo is the optimal H∞ norm.
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Risk-sensitive Optimal Control

Assume

Ax+ Bu = ε

y+ Cx = η

Then ML-estimation means that we find sequence of (ε, η) minimizing

D :=
∑

dt where

dt :=

[

ε

η

] [

R1 R12

R21 R2

]−1 [
ε

η

]

(Note duality to C).
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Risk-sensitive Optimal Control

The risk-sensitive optimal control can be found by dynamic programming of

the so called total stress

S := C+ θ−1
D

One splits the optimizing into extremizing ”past stress up to time t” and

”future stress after time t”.

Extremizing over sequences x0, . . . , xT (max), and future ut(min) and

yt(max) using Lagrange-multipliers λ, µ give nice stationary conditions.
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Risk-sensitive Optimal Control

Stationary conditions at time t can be written





Q1 Q12 A∗

Q21 Q2 B∗

A B −θ R1









x

u

λ





τ

=





0

0

θ R12 µ





τ

, τ ≥ t





R1 R12 A

R21 R2 C

A∗ C∗ −θ Q1









−θλ

−θ µ

x





τ

=





−Bu

−y

θ Q12u





τ

, τ ≤ t

One has that

θ

[

R1 R12

R21 R2

] [

λ

µ

]

=

[

ε

η

]

For more details, see Whittle’s book.
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