
Lecture 4

◮ Structured Uncertainties.
◮ Structured Singular Value µ.
◮ Structured Robust Stability.
◮ Structured Robust Performance.
◮ µ Synthesis via D − K iterations.
◮ Integral Quadratic Constraints

Pulling out Uncertainties
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Structured Uncertainty

The new pulled out uncertainty has a diagonal structure
composed of primitive uncertain blocks. Every primitive block
can be

◮ complex unstructured matrix uncertainty to represent
neglected dynamics.

◮ real parameter scalar uncertainty to represent uncertainty
in system coefficients.

Usually real uncertainty is much harder to deal with. One
(conservative) way to treat it is to cover it with complex
uncertainty.

Thus we shall assume that

∆(s) = diag {δ 1(s)Ir1 , . . . ,δ K (s)IrK , ∆1(s), . . . , ∆L(s)}

where δ k, ∆l ∈ RH∞ and qδ kq∞ ≤ 1, q∆lq∞ ≤ 1.

Structured Singular Value

Recall the Small Gain Theorem which says that
(I − M∆)−1 ∈ RH∞, ∀∆ ∈ BRH∞ iff qMq∞ < 1.

Thus if there exist a frequency ω and a complex matrix ∆ such
that

det(I − M( jω )∆) = 0

then q∆q is an upper bound on the stability margin qMq−1
∞ .

Given a matrix M ∈ Cp$q introduce

α min = inf{q∆q : det(I − M∆) = 0, ∆ ∈ Cq$p}.

We have the relation

qMq = σ max(M) =
1

α min
.

Now consider the structured uncertainty set

D = {diag [δ 1 Ir1 , . . . ,δ K IrK , ∆1, . . . , ∆L] : δ k ∈ C, ∆l ∈ Cml$ml

Definition: Given a matrix M ∈ Cn$n the structured singular
value µD(M) is defined as

µD(M) =:
1

min{q∆q : det(I − M∆) = 0, ∆ ∈ D}
.

If det(I − M∆) ,= 0 for all ∆ ∈ D then µD(M) := 0.

Elementary property:

◮ D = {δ I : δ ∈ C} [ µD(M) = ρ(M).
◮ D = Cn$n [ µD(M) = qMq.
◮ In general, C ⋅ I ⊂ D ⊂ Cn$n so ρ(M) ≤ µD(M) ≤ qMq.

How good are the bounds?

Let

∆ =

δ 1 0

0 δ 2


 .

(1) For M =


0 β

0 0


 with β > 0 we have

ρ(M) = 0, qMq = β , µD(M) = 0.

(2) For M =


−1/2 1/2
−1/2 1/2


 we have

ρ(M) = 0, qMq = 1.

Since det(I − M∆) = 1+ (δ 1 − δ 2)/2 we get µD(M) = 1.

Thus both bounds are bad unless ρ ( σ̄ .

Invariant transformation

Let us try to find a transformation which does not affect µD(M)
but changes ρ and σ̄ .

Define two sets

U = {U ∈ D : U U∗ = I},
D = {diag[D1, . . . , DK , d1 Im1 , . . . , dL−1 ImL−1 , ImL ] :

Dk ∈ Crk$rk, Dk = D∗
k > 0, dl ∈ R, dl > 0}.

Note that for any ∆ ∈ D, U ∈U and D ∈D it holds

◮ U∗ ∈U, U∆ ∈ D, ∆U ∈ D (property of the set D).
◮ qU∆q = q∆Uq = q∆q (since U U∗ = I).
◮ D∆ = ∆D (property of the set D ).

Theorem

For all U ∈U and D ∈D
1) µD(M) = µD(U M) = µD(M U).

2) µD(M) = µD(DM D−1).

Proof: 1) Since for each U ∈U

det(I − M∆) = 0 \ det(I − M U U∗∆) = 0
∆ ∈ D \ U∗∆ ∈ D

we get µD(M) = µD(M U).

2) For all D ∈D

det(I − M∆) = det(I − M D−1∆D) = det(I − DM D−1∆)

since ∆ and D commute. Therefore µD(M) = µD(DM D−1).
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Improving the bounds

Using Theorem we can tighten the bounds as

sup
U∈U

ρ(U M) ≤ µD(M) ≤ inf
D∈D

qDM D−1q.

Theorem:
sup
U∈U

ρ(U M) = µD(M).

Theorem: If 2K + L ≤ 3 then

µD(M) = inf
D∈D

qDM D−1q.
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>> w=logspace(-2,2);
>> G=ss(randn(5),randn(5),randn(5),0); Gw=frd(G,w);
>> bounds = mussv(Gw,[1 0;-1 0;-1 0;-1 0;-1 0]);
>> loglog(bounds)

Remarks:

◮ In general the quantity ρ(U M) has many local maxima
and the local search cannot guarantee to obtain µ(M).

◮ Computationally there is a slightly different formulation of
the lower bound by Packard and Doyle which gives rise to
a power algorithm. It usually works well but has no prove of
convergence.

◮ The upper bound can be computed by convex optimization,
but it is not always equal to µ(M) if 2K + L > 3.

◮ It is the upper bound that is the cornerstone of µ synthesis,
since it gives a sufficient condition for robust performance.

Structured Robust Stability
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Introduce the set

T (D) = {∆ ∈ RH∞ : ∆(s) ∈ D in RHP}.

We have the following structured Small Gain Theorem.

Theorem: Let M ∈ RH∞. The closed-loop system (M , ∆) is
well-posed and internally stable for all ∆ ∈ T (D) with q∆q∞ < 1
if and only if

sup
ω∈R

µD(M( jω )) ≤ 1.

Proof: The robust stability condition is

(I − M∆)−1 ∈ RH∞, ∀∆ ∈ T (D), q∆q∞ < 1.

“Z” It is sufficient to show that

sup
Res≥0

µD(M(s)) = sup
ω∈R

µD(M( jω )).

Obviously ≥. The opposite inequality follows from the fact that
zeros of det(I − M∆) move continuously with respect to ∆ and
det(I − Mα ∆) has no zeros in RHP if qM∆q∞ < 1/α
(homotopy argument).

“[” If supω∈R µD(M( jω )) > 1 then by definition of µ there
exist ω 0 ∈ R ∪ {+∞} and ∆0 with q∆0q < 1 such that the matrix
I − M( jω 0)∆0 is singular. Next, one can apply the same
interpolation argument as in the Small Gain Theorem.

Structured Robust Performance
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Let [p2, q2] = size(M22). Define an augmented block structure

DP =


D 0

0 Cq2$p2


 .

Theorem: For all ∆ ∈ T (D) with q∆q∞ < 1/β the closed loop is
well posed, internally stable and qFu(M , ∆)q∞ ≤ β if and only if

sup
ω∈R

µDP(M( jω )) ≤ β .

Performance for Constant LFT

Let M =


M11 M12

M21 M22


 be a complex matrix and suppose that

D1 and D2 are two defined structures which are compatible in
size with M11 and M22 correspondingly.

Introduce a third structure as

D =


D1 0

0 D2


 .

Theorem:

µD(M) < 1 \





µD1(M11) < 1
sup ∆1∈D1

q∆1q≤1
µD2(Fu(M , ∆1)) < 1

M

∆1

∆2

✲

✛

✲

✛

Proof:

“Z” Let q∆iq ≤ 1. By Schur complement

det(I − M∆) = det

I − M11∆1 −M12∆2
−M21∆1 I − M22∆2


 =

= det(I − M11∆1)det(I −Fu(M , ∆1)∆2) ,= 0.

“[” Basically the same identity plus (from definition of µ)

µD(M) ≥ max{µD1(M11), µD2(M22)}
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µ Synthesis via D − K Iterations
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The problem is to solve

min
K−stab

qF l(P, K )qµ .

Approximation: D − K iterations for the upper bound

min
K−stab

inf
D, D−1∈H∞

qDF l(P, K )D−1q∞

under the condition D(s)∆(s) = ∆(s)D(s).

Remarks:

◮ Step 1 is the standard H∞ optimization.
◮ Step 2 can be reduced to a convex optimization.
◮ No global convergence is guaranteed.
◮ Works sometimes in practice.

Integral Quadratic Constraint

∆ ✲✲ ∆vv

The (possibly nonlinear) operator ∆ on Lm
2 [0,∞) is said to

satisfy the IQC defined by Π if

∫ ∞

−∞

[
v̂(iω )
(̂∆v)(iω )

]∗

Π(iω )

[
v̂(iω )
(̂∆v)(iω )

]
dω ≥ 0

for all v ∈ L2[0,∞).

IQC Stability Theorem
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Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆
satisfies the IQC defined by Π(iω ). If

[
G(iω )

I

]∗
Π(iω )

[
G(iω )

I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.

IQC Stability Theorem with Several IQCs

G(s)

τ ∆

❝
❝

✛✛

✲✲

❄

✻

Let G(s) be stable and proper and let ∆ be causal. For all
τ ∈ [0, 1], suppose the loop is well posed and τ ∆ satisfies the
IQCs defined by Π1(iω ), . . . , Πm(iω ). If for some τ1, . . . ,τ m ≥ 0

[
G(iω )

I

]∗ m∑

k=1

τ kΠk(iω )
[

G(iω )
I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.

∆ structure Π(iω ) Condition

∆ passive
[

0 I
I 0

]

q∆(iω )q ≤ 1
[

x(iω )I 0
0 −x(iω )I

]
x(iω ) ≥ 0

δ ∈ [−1, 1]
[

X (iω ) Y(iω )
Y(iω )∗ −X (iω )

]
X = X ∗ ≥ 0

Y = −Y∗

δ (t) ∈ [−1, 1]
[

X Y
YT −X

]

∆(s) = e−θ s − 1
[

x(iω )ρ(ω )2 0
0 −x(iω )

]
ρ(ω ) =

2 maxpθ p≤θ 0 sin(θω/2)

The IQC toolbox

 Exp(-ds)-1

uncertain delay

performance

monotonic with 
restrict rate

2s  +2s+12

0.01s  +s+.012

Controller

s

1

s

1
10

>> iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5
states: 10
simple q-forms: 7

Solving with 62 decision variables ...

ans = 4.7139
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Verification by IQCs

IQCs prove stability below the lower line.

A library of analysis objects

1

Out

window

white noise
performance

unknown const

slope nonlinearity

sector+popov

sector
sat-int

Popov

popov IQC

polytope with
restrict rate

polytope

performance

odd slope nonlinearity

norm bounded

monotonic with 
restrict rate

harmonic

encapsulated odd deadzone

encapsulated deadzone

diagonal structure

 Exp(-ds)-1

cdelay

(s-1)

s(s+1)

Zero-Pole

1

s+1

Transfer Fcn

|D(t)|<k

TV scalar

Sum
Step Source

x’ = Ax+Bu
 y = Cx+Du

State-Space

STV scalar

Mux

Mux

K

Matrix
Gain

LTI unmodeled

1

Gain

Demux

Demux

1

In

What have we learned today?

◮ Pulling out uncertainties gives a diagonal structure
◮ Structured singular value µ is natural for robust stability but

not computable exactly.
◮ Robust performance equivalent to robust stability with

augmented uncertainty.
◮ D − K iterations as approach to µ synthesis.
◮ Integral Quadratic Constraints give general framework.
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