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Robust Control, 9hp

7 Lectures, 7 exercises

Examination: Exercises + Handins + Exam

Book: Essentials of Robust Control, Zhou/Doyle

Tools: Matlab (a Julia-initiative is encouraged)

Schedule: See home page, details TBD now
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Lecture 1 - today

Self-study, exercises, handins, challenges

Robustness for scalar systems, GangOfFour

Robustness for MIMO systems, singular values?

Why H∞ control ?

How define ’closeness’ of systems? The Vinnicombe metric
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Robust Control - Introduction

Process dynamics may change

Feedback can deal with process variations

How to characterize uncertainty

Parameter variations, more general variations, unmodeled

dynamics

Additive ∆, multiplicative δ and feedback uncertainty ∆fb

P Σ

∆

P Σ

δ

PΣ

∆fb

Richard Pates and Bo Bernhardsson Robust Control 2018



Non-robustness - reality strikes back

A wise man has said (and many agree with me):

”You often pay for lack of understanding in your control system design

by non-robustness.”

Unmodeled dynamics, too simplistic models, too aggressive control

design, too high bandwidth, badly formulated optimization criterion,

variations in parameters, lack of understanding of fundamental

performance limitations . . .

Let’s do PI control of a first order system together:
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Example - PI control of 1st order system

Normalizing input, output and time variables let’s assume

P (s) =
1

s + 1

Assume the pole at −1 actually corresponds here to fast dynamics in

a measurement sensor.

Advice from expert:

”For this process you shouldn’t aim to achieve a closed loop bandwidth

as fast as the sensor dynamics, that would probably give large control

signals and non-robustness. Aim a decade lower. It’s good that you

modeled the sensor dynamics. Try PI control and pole placement.”
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Example - PI control of 1st order system

Let’s follow the advice

P (s) =
1

s + 1
, C(s) = kp +

ki

s

Pole-placement design

(s + 1)(kps + ki) = s2 + 2ζ0ω0s + ω2
0

We get

kp = 2ζ0ω0 − 1

ki = ω2
0

We expect a closed loop time bandwidth of 1/10th of the sensor

bandwidth to be realistic.

Therefore we guess ω0 = 0.1, ζ0 = 0.5. But let’s evaluate different ω0
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Result - Rise time vs ω0
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Trade-off looks as expected.

Let’s check the control signal size also.
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Step Response - input signal size
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Hmm, the behavior when ω0 is small is rather unexpected.

Let’s check the Nyquist diagram for ω0 = 0.1 and do some simulations
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Nyquist Diagram ω0=0.1
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The design with ω0 = 0.1 has terrible robustness. The system

becomes unstable with ∼ 10 % gain change

Reasonable design choices, but result is practically useless!

Was any of the expert advice bad? Choice of PI? The pole-placement?

(Handin 1a, explain and make a better design)
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The Gangs of Four and Seven
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Gain Curves of the Gang of Four
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Gain curves of the Gang of Four for a heat conduction process with I (dash-dotted), PI

(dashed) and PID (full) controllers.

One plot gives a good overview of performance and robustness!
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Analysis of Small Process Variations

T =
PC

1 + PC
,

dT

T
=

1

1 + PC

dP

P
= S

dP

P

S =
1

1 + PC
,

dS

S
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−PC
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Gyd =
P

1 + PC
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dGyd

Gyd

= S
dP

P

Gun =
C

1 + PC
,

dGun

Gun
= −T

dP

P

Recall properties of S and T

S + T = 1

S small at low frequencies S ≈ 1 at high frequencies

T small at high frequencies T ≈ 1 at low frequencies

Ms = max
ω

|S(iω)|, Mt = max
ω

|T (iω)|
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Ms - better than gain and phase margins

Gain margin

gm ≥
Ms

Ms − 1

Phase margin

ϕm ≥ 2 arcsin
1

2Ms

1/Ms ωms

ωs

−1

Constraints on both gain and phase margins can be replaced by

constraints on Ms.

Ms = 2 guarantees gm ≥ 2 and ϕm ≥ 30◦

Ms = 1.6 guarantees gm ≥ 2.7 and ϕm ≥ 36◦

Ms = 1.4 guarantees gm ≥ 3.5 and ϕm ≥ 42◦

Ms = 1 guarantees gm = ∞ and ϕm ≥ 60◦
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Robustness margin, SISO case

1 + P C

A

B

C∆P

−1

Re PC

Im PC

Stability for P + ∆P guaranteed if
∣
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∆P
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∣
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Robustness problems when T is large, Mt = max |T (iω)|
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Robustness margin - multiplicative uncertainty

A feedback system where the process has multiplicative uncertainty,

i.e. P (1 + δ), where δ is the relative error, can be represented with the

following block diagrams

P

−C

Σ

δ δ

−

P C

1+P C

The small gain theorem gives the stability condition

|δ| <
∣
∣
∣
1 + PC

PC

∣
∣
∣ =

1

|T |

Same result as obtained before!
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How about robustness for MIMO systems?

Spoiler alert: We’ll start with a failed approach (MIMO Nyquist)

There is a generalization of the Nyquist theorem to the MIMO case

G(s) = W (s)Λ(s)W −1(s)

Characteristic loci: λi(s) := eigenvalues of G(s)

Theorem [MIMO Nyquist]: If G(s) has Po unstable poles, then the

closed loop system with return ratio −kG(s) is stable if the

characteristic loci of kG(s) encircle the point -1 Po times

anticlockwise.
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Why not use characteristic loci ?

G(s) can have well behaved char. loci with great apparent stability

margins to −1, but the loop can still be quite non-robust

What was finally agreed upon by control researchers:

Performance and robustness is best understood by using

singular values σi(G) instead of eigenvalues λi(G)
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MIMO example - why use singular values

Plant model [Distillation column - Skogestad]

P (s) =
1

50s + 1

(

0.878 −0.864
1.082 −1.096

)

Choose C(s) = 1
s
P (s)−1 (dynamic decoupling), gives

Loop gain PC = 1
s
I

Closed-loop : T (s) = PC(I + PC)−1 = 1
s+1I

Nice decoupled first order responses with time constant 1.

MIMO Nyquist diagram looks fine.

But non-robust...
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Example -continued

In reality: 20 percent input uncertainty (e.g. valve variations)

True control signal is ui,p = (1 + δi)ui with |δi| < 0.2

Pδ =
1

50s + 1

(

0.878 −0.864
1.082 −1.096

)(

1.2 0
0 0.8

)

Using same controller as before gives

PδC =
1

s

(

14.83 −11.06
17.29 −12.83

)
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Example -closed loop step responses
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)

With P : No interactions, nice step responses

With Pδ: Large interaction, 500 percent overshoot in step responses
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Example -continued

The design is extremly sensitive to uncertainty on the inputs

But not to uncertainty on the outputs (easy to check)

Several indications of a directionality problem:

RGA(P ) =

(

35 −34
−34 35

)

cond(P ) :=
σ(P )

σ(P )
= 142

How do we analyse performance and robustness for MIMO systems ?
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Failure of LQG to guarantee robustness

In the 70s there were great hopes to soon find THE robust control

design method

For LQ design one automagically always got great robustness

guarantees

Ms ≤ 1

Disturbance rejection performance improved for all frequencies

Gain Margin [1/2, ∞], Phase Margin ≥ 60 degrees.

Circle criterion: Stability under feedback with any nonlinear

time-varying input gain with slopes in (1/2, ∞).

(Requirements: No cross-terms, Q12 = 0. All states measurable.)
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Robustness of LQG

Kalman filter producing x̂ has similar (dual) robustness properties

Since the LQG controller combines two robust parts: LQ control and

Kalman filtering, it was for a long time hoped that general robustness

guarantees for the LQG controller would soon be found

But, output feedback u = −Lx̂ was surprisingly (?) found to have no

automatic guarantees for robustness

This was a dissappointment, especially for people hoping to automize

design

Turned attention towards robust control, e.g. H∞ in the 80s
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Robust stability vs robust performance

(Output) sensitivity function

S := (I + PC)−1

Nominal stability(NS): S stable

Nominal performance(NP): σ(S) ≤ 1/|Wp|, where Wp(s) weight

Robust stability(RS): Sδ := (I + PδC)−1 stable, ∀Pδ ∈ P

Robust performance(RP): σ(Sδ) ≤ 1/|Wp|, ∀Pδ ∈ P

For SISO systems NP + RS ⇒ RP (more or less, will show later)

For MIMO systems NP + RS ; RP

Multiviariable effects make simple analysis dangerous
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Robust Performance - SISO case

❢ WS
✲❄✲ ✲(1 + ∆WT )P✲C✲ ✲

✻−

w
e

❢

Want ‖WsS‖ < 1 for system with multiplicative uncertainty
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Robust Performance - SISO case

Nominal Performance ⇔ ‖WSS‖∞ ≤ 1

Robust Stability ⇔ ‖WT T ‖∞ ≤ 1

From figure:

Robust Performance ⇔ |WS | + |WT L| ≤ |1 + L|, ∀s = iω

⇔ |WSS| + |WT T | ≤ 1, ∀s = iω
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Robust Performance - SISO case

Robust Performance

‖Tew‖∞ < 1 for all ‖∆‖ ≤ 1

is hence equivalent to the condition

max
ω




 |WSS|

︸ ︷︷ ︸

nominal performance

+ |WT T |
︸ ︷︷ ︸

robust stability




 < 1

RP almost guaranteed when we have NP + RS

NP + RS ⇒ RP/2

Explains why RP is not a big issue for SISO systems

Richard Pates and Bo Bernhardsson Robust Control 2018



Highlight 1: H∞ control

P

C

✲ ✲

✛

✲
w z

u y
P =





P11 P12

P21 P22





Tzw = P11+P12C(I−P22C)−1P21

Optimal control:

min
C−stab

‖Tzw‖∞

Suboptimal control: Given γ find stabilizing C such that

‖Tzw‖∞ < γ ⇐⇒ ‖z‖2 < γ‖w‖2, ∀w

The optimal control problem is solved by iterating on γ
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The H∞ norm = Induced L2 norm

The H∞ norm of a stable function G(s) is given by

‖G‖∞ = sup
‖u‖2≤1

‖Gu‖2 = sup
ω

‖G(jω)‖ = sup
ω

σ(G(jω))

For unstable G(s) the norm is defined as +∞

Notation:

G ∈ RHp×m
∞ means G(s) rational of size p × m with finite H∞ norm
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The H∞ norm = Induced L2 norm

The H∞ norm of a stable function G(s) is given by
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Singular value plot for 2 × 2 system
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The Matlab command norm(G,’inf’) uses bisection together with

the theorem above to get ‖G‖∞ = 50.25. Frequency sweep with 400

frequency points gives only the maximal value 43.53.

Richard Pates and Bo Bernhardsson Robust Control 2018



MIMO Performance

In the MIMO case the order of matrices matters

Li = CP,
Si = (I + Li)

−1,
Ti = I − Si,

Lo = PC,
So = (I + Lo)−1,
To = I − So.

TAT: Which of the following matrices are the same?

PC(I + PC)−1, C(I + PC)−1P, (I + PC)−1PC

(I + CP )−1CP, P (I + PC)−1C, CP (I + CP )−1
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Highlight 2: When are Two Systems Close ?

For stable systems

δ(P1, P2) = max
ω

|P1(iω) − P2(iω)|

as a measure of of closeness of two processes.

Is this a good measure?

Are there other alternatives?

A long story

Gap metric (Zames)

Graph metric coprime factorization (Vidyasagar) G = N/D
Vinnicombe’s metric

GOF performance metric
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When are Two Systems Close?

0 1 2 3 4 5
0

50

100
Open loop

t

y

0 0.1 0.2 0.3 0.4 0.5
-1

0

1

2

3
Closed loop

t

y

0 0.5 1 1.5 2
0

100

200

300

400

500
Open loop

t

y

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

Closed loop

t
y

Comparing step responses can be misleading!

Frequency responses are better

Better to compare closed loop responses
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Similar Open Loop Different Closed Loop
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P1(s) =
100

s + 1
, P2(s) =

100

(s + 1)(1 + 0.025s)2

Complementary sensitivity functions with unit feedback C = 1

T1 =
100

s + 101
, T2 =

1.616e5

(s + 83.9)(s2 − 2.90s + 1926s + 1926)

Very different closed loop systems
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Different Open Loop Similar Closed Loop
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Closed loop systems are very similar
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ν-Gap Metric [Vinnicombe]

For the SISO case

δν(P1, P2) = sup
ω∈R

|P1(jω) − P2(jω)|
√

1 + |P1(jω)|2
√

1 + |P2(jω)|2

(+ some ”winding number constraint”).

Geometrical interpretation: Distance on the Riemann sphere
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Geometric Interpretation
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Feedback Interpretation

Consider systems with the transfer functions P1 and P2. Compare the

complementary sensitivity functions for the closed loop systems

obtained with a controller C that stabilizes both systems.

δ(P1, P2) =
∣
∣
∣

P1C

1 + P1C
−

P2C

1 + P2C

∣
∣
∣ =

∣
∣
∣

(P1 − P2)C

(1 + P1C)(1 + P2C)

∣
∣
∣

We have

δ(P1, P2) ≤ Ms1Ms2|(P1 − P2)C|

Vinnicombe’s metric corresponds to C = 1, i.e. unit feedback.
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❢ ❢

❢

❢ C P✲ ✲ ✲ ✲ ✲❄

❄

✻
✲ ❄

✛

r

−

u up
d

n

y
di

y = To(r − n) + SoPdi + Sod,

r − y = So(r − d) + Ton − SoPdi,

u = CSo(r − n) − CSod − Tidi,

up = CSo(r − n) − CSod + Sidi

1) Good disturbance rejection ”in all directions” if

σ(Lo) >> 1, σ(C) sufficiently large

2) Good robustness and good sensor noise rejection if

σ(Lo) << 1, σ(Li) << 1, σ(C) sufficiently small.

Require 1) at low-frequency and 2) at high frequency
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MIMO Loop-Shaping Design

A good performance controller design typically requires

large gain in the low frequency region:

σ(PC) >> 1, σ(CP ) >> 1, σ(C) >> 1.

small gain in the high frequency region:

σ(PC) << 1, σ(CP ) << 1, σ(C) ≤ M

where M is not too large.

Wouldn’t it be nice to be able to do loopshaping worrying only about

the gains and not care about phase and stability ?
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MIMO requirements

Example: Weighted (output) sensitivity requirement

‖W1(iω)So(iω)W2(iω)‖ ≤ 1, ∀ω

Often W1(s), W2(s) are chosen as rational functions without rhp poles

or zeros
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Matlab - General H∞ design

[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON)
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Matlab - mixsyn

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3) or

mixsyn H-infinity mixed-sensitivity synthesis method for

robust control design. Controller K stabilizes plant G

and minimizes the H-infinity cost function

|| W1*S ||

|| W2*K*S ||

|| W3*T ||Hinf

where

S := inv(I+G*K) % sensitivity

T := I-S = G*K/(I+G*K) % complementary sensitivity

W1, W2 and W3 are stable LTI ’weights’
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Example - mixsyn

Minimizes H∞ norm of






W1(I + GK)−1

W2K(I + GK)−1

W3GK(I + GK)−1






[C,CL,GAM,INFO] = mixsyn(G,W1,W2,W3)

G = (s-1)/(s+1)^2;

W1 = 5*(s+2)/(100*s+1);

W2 = 0.1;

[K,CL,GAM] = mixsyn(G,W1,W2,[]);

L = G*K;

S = inv(1+L);

T = 1-S;

sigma(S,’g’,T,’r’,GAM/W1,’g-.’,GAM*G/ss(W2),’r-.’)
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Result
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The GOF matrix

❡ P

C ✛

✲✲

✛

❄ ❄❡

d n

y

u

[

y
u

]

=

[

I
C

]

(I + PC)−1
[

I P
]
[

n
d

]
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Norm of GOF matrix

❡ P

C ✛

✲✲

✛

❄ ❄❡

d n

y

u

What is captured by the norm of the GOF matrix?

∥
∥
∥
∥
∥

[

I
C

]

(I + PC)−1
[

I P
]
∥
∥
∥
∥
∥

∞

?
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GOF Stability Margin, bP,C

Stability margin against ”normalised coprime perturbations”

(we will learn what this is in the course)

bP,C =







∥
∥
∥
∥
∥

[

I

C

]

(I + PC)−1
[

I P
]
∥
∥
∥
∥
∥

−1

∞

if C stabilizes P

0 otherwise

The larger bP,C ∈ [0, 1] is, the more robustly stable the closed loop

system is.

Remark: Note that bP,C depends on scalings of inputs and outputs.

Good fit with Vinnicombe’s metric:

Theorem Assume (P1, C) is stable, then

δν(P1, P2) < bP1,C =⇒ (P2, C) is also stable.
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Matlab - loopsyn

Richard Pates and Bo Bernhardsson Robust Control 2018



Hihglight 3: Glover McFarlane Loopshaping

❞ PW1 W2

K∞

❄❄ ✲✲

✛ ✛

ds ns

ys

us

❞
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P

K∞

W1

✻

✲

❄

✛

W2

1) Choose W1 and W2 and absorb them into the nominal plant P to

get the shaped plant Ps = W2PW1.

2) Calculate bopt(Ps). If it is small (< 0.25) then return to Step 1 and

adjust weights.

3) Select ǫ ≤ bopt(Ps) and design the controller K∞ such that

∥
∥
∥
∥
∥

[

I
K∞

]

(I + PsK∞)−1M̃−1
s

∥
∥
∥
∥
∥

∞

<
1

ǫ
.

4) The final controller is K = W1K∞W2.
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Other Highlights

The game theory interpretation of H∞ control

and the connection to risk-aversive control

QFT design

Some recent research results

...
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What now?

Self-study material - see home page

Exercise 1

Handin 1
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