
Exercise Session 4
1. Suppose that

P (s) = 16− s
(s− 6)(s+ 11) .

Assuming a standard feedback configuration, the transfer function from refe-
rence to control effort is given by

C(s)(I + P (s)C(s))−1.

Use mixsyn to demonstrate that this plant will always need ‘significant control
action’ to track a reference. Now design a controller with integral action for
this process. Try to achieve a control bandwidth of 10 rad/s. Comment on the
merits of your design. Are you able to achieve a significantly higher (or lower)
control bandwidth?

2. Given a nominal plant P (s), define the multiplicative uncertainty set of size γ
to be

Pγ = {P∆ : P∆ = P (I + ∆), ‖∆‖∞ < γ}.

Write the problem of maximising γ such that C(s) stabilises every element of
Pγ as an H∞ optimisation problem that could be solved with hinfsyn. Show
that given any γ > 0, if P (s) is stable then there exists a controller that
stabilises all P∆(s) ∈ Pγ .

3. Most classically motivated design specifications can be written in terms of the
sensitivity and complementary sensitivity functions. Given this, when using
mixsyn we may be tempted to set W2 = [] and solve

inf
C(s)

∥∥∥∥∥
[
W1S

W3T

]∥∥∥∥∥
∞
. (1)

We will now try to understand why this might not be a good idea. Suppose
that for a given P (s), the optimal solution to eq. 1 is achieved by C(s). Now
suppose that the plant is instead given by

P̄ (s) = (s+ 1)2

s2 + δs+ 1P (s).

Show that if δ > 0, then the controller

C̄(s) = s2 + δs+ 1
(s+ 1)2 C0(s)

is optimal with respect to eq. 1. By considering the transfer function

P̄ (s)(I + C̄(s)P̄ (s))−1,

argue that for small δ this controller will be unsatisfactory. Will including a
term with W2 6= 0 prevent this problem?
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4. In the lecture the H∞-loopshaping method of Glover and MacFarlane was
presented. There it was claimed that if bP,C > 0.3, then we will have good
robustness guarantees and the loop gain L = PC will approximate the open
loop gain of P reasonably well. In this question we will examine this claim in
more detail.

(a) Show that if P (s), C(s) are scalar and bP (s),C(s) ≥ 1
γ , then

1
γ
− 1
|P (s)| ≤

|P (s)C(s)|
|P (s)| ,

and for small enough |P (s)|

|P (s)C(s)|
|P (s)| ≤ γ

1− |P (s)|γ .

In what sense do these bounds show that the loopshape L approximates
the gain of P?

(b) Explain the role of the weighting functions in the H∞-loopshaping met-
hod.

5. In the lecture we saw that if

P (s) = 1
s+ 1 ,

then we could design a controller which tracked a step response alarmingly well.
We will now prove that we can in fact track the step to arbitrary precision!
Such a claim also seems a little ridiculous, so we will also show that such a
controller has no robustness guarantees to coprime factor uncertainty...

(a) Show that if Q(s) = C(s) (I + P (s)C(s))−1 is stable, then the controller

C(s) = Q(s)(I − P (s)Q(s))−1

stabilises P (s).
(b) Use this to argue that

inf
C(s)
‖W (s)S(s)‖∞ ⇐⇒ inf

Q(s)∈RH∞
‖W (s)(I − P (s)Q(s))‖∞.

(c) Consider now
Q(s) = s+ 1

s/T + 1 .

Show that given any ε > 0, there exists a T > 0 such that

‖1
s

(I − P (s)Q(s))‖∞ ≤ ε.

Why does this imply that we can track a step arbitrarily well? Can you
generalise this argument to other transfer functions P (s)?

(d) Show that if T ≥ 1, then the Q(s) from (c) satisfies

‖Q(s)‖∞ = T,

and furthermore that this implies that bP,C ≤ 1
T . What does this tell us

about the robustness of the of our step tracking controller as ε→ 0?
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