
Exercise Session 3
1. In the lecture we saw that if S = (I + P (s)C(s))−1 satisifies ‖S(s)‖∞ ≤ 1, then

by the small gain theorem the feedback interconnection of C(s) and P∆(s) is
stable for all

P∆(s) ∈ {P∆(s) : P∆(s) = (I + ∆(s))−1 P (s), ‖∆(s)‖∞ < 1}.

Find the analogous uncertainty sets when given a gain bound of 1 on each
other element of the gang of four.

2. In the lecture we saw that given a transfer function G(s) with minimal reali-
sation [

A B

C D

]
,

if there exists a P � 0 such that[
ATP + PA+ CTC PB + CTD

BTP +DTC DTD − I

]
� 0,

then ‖G(s)‖∞ ≤ 1. In this question we will prove this assertion. Let Y (s) =
G(s)U(s), and let y(t), u(t) be the inverse Laplace transforms of Y (s), U(s).
Recall the time domain formula for the H∞ norm:

‖G(s)‖∞ = sup
u:‖u‖2 6=0

‖y‖2
‖u‖2

.

(i) Show that if ‖y‖22 − ‖u‖22 ≤ 0, ∀u(t), then ‖G(s)‖∞ ≤ 1.
(ii) Define the state space model

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,
y(t) = Cx(t) +Du(t),

and the function V (t) = xT (t)Px(t). Show that 0 ≥ V̇ + yT y−uTu if and
only if [

x

u

]T [
ATP + PA+ CTC PB + CTD

BTP +DTC DTD − I

] [
x

u

]
≤ 0.

(iii) Show that for all T ≥ 0, ∫ T

0
V̇ dt ≥ 0.

How can we combine this with (i)–(ii) to prove that ‖G‖∞ ≤ 1? Hint:
Consider limT→∞

∫∞
0 V̇ + yT y − uTudt.

3. This question is about reducing the conservatism of the small gain theorem
using loop transforms. Suppose that ∆ is a real number that satisfies 0 <
∆ < 2. Show that the small gain theorem implies that the negative feedback
interconnection of G and ∆ is stable if G is stable and

|G(jω)| ≤ 1
2 .
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Consider now the transformation

∆̃ =
1− 3

2∆
1 + 1

2∆
,

G̃(s) =
1
2 −G(s)
G(s) + 3

2
.

Show that −1 < ∆̃ < 1, and that the small gain theorem implies that the
feedback interconnection of ∆̃, G̃ is stable if G(s) is stable and

Re(G(jω)) ≥ − 1
2 .

Show that stability of the negative feedback interconnection of G,∆ is equiva-
lent to that of G̃, ∆̃. How has this loop transform reduced conservatism?

4. This problem is about proving the converse direction of the small gain theorem.
We will prove that (ii)=⇒(i) by showing that if ‖G(s)‖∞ > 1, then there exists
a ∆(s) ∈ Rm×n satisfying ‖∆(s)‖∞ < 1 for which

(I +G(s)∆(s))−1

is unstable.

(i) We will first solve the case that ∆ is allowed to be a complex matrix. To
do this, show that if ‖G(s)‖∞ > 1, then there exists a frequency ω0 and
a matrix ∆C such that

det(I +G(jω0)∆C) = 0

and σ(∆C) < 1.
(ii) We will now try to construct a ∆(s) ∈ Rm×n to interpolate ∆C from

(i). Suppose that X ∈ Cn×n satifies X∗X = I and D ∈ Rn×n satisfies
DTD = I. Show that if (X −D) is invertible and scalar, then

Q =
(
s

ω0
Im
(
(X −D)−1

)
+ Re

(
(X −D)−1

))−1
+D

satisfies Q (jω)∗Q (jω) = I for all ω and Q (jω0) = X. Check that the
same claims hold in the matrix case numerically (or prove it!). How can
we use this construction to find a ∆(s) ∈ Rm×n such that

∆(jω0) = ∆C, σ(∆(jω)) = σ(∆C)? (1)

Hint: Consider the SVD of ∆C.
(iii) The problem with our previous construction is that ∆(s) is not guaranteed

to be stable. We will now show that we remove any such unstable poles
without affecting the interpolation requirements. Given pi ∈ C, define

Fpi(s) = − (s− pi)
(s+ p∗i )

(s/ω0 − ω0/pi)
(s/ω0 + ω0/p∗i ) .

Show that |Fpi(jω)| = 1 for all ω and

Fpi(jω0) = pi/ω0 + ω0/pi

p∗i /ω0 + ω0/p∗i
.

Explain how to combine functions of this form with the construction from
(ii) to obtain a stable ∆(s) ∈ Rm×n that meets eq. 1.
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