Exercise Session 3

1. In the lecture we saw that if $S = (I + P(s)C(s))^{-1}$ satisifies $||S(s)||_{\infty} \leq 1$, then by the small gain theorem the feedback interconnection of C(s) and $P_{\Delta}(s)$ is stable for all

$$P_{\Delta}(s) \in \{P_{\Delta}(s) : P_{\Delta}(s) = (I + \Delta(s))^{-1} P(s), \|\Delta(s)\|_{\infty} < 1\}.$$

Find the analogous uncertainty sets when given a gain bound of 1 on each other element of the gang of four.

2. In the lecture we saw that given a transfer function G(s) with minimal realisation

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix},$$

if there exists a $P \succ 0$ such that

$$\begin{bmatrix} A^T P + PA + C^T C & PB + C^T D \\ B^T P + D^T C & D^T D - I \end{bmatrix} \preceq 0,$$

then $||G(s)||_{\infty} \leq 1$. In this question we will prove this assertion. Let Y(s) = G(s)U(s), and let y(t), u(t) be the inverse Laplace transforms of Y(s), U(s). Recall the time domain formula for the \mathcal{H}_{∞} norm:

$$||G(s)||_{\infty} = \sup_{u:||u||_2 \neq 0} \frac{||y||_2}{||u||_2}.$$

- (i) Show that if $||y||_2^2 ||u||_2^2 \le 0$, $\forall u(t)$, then $||G(s)||_{\infty} \le 1$.
- (ii) Define the state space model

$$\dot{x}(t) = Ax(t) + Bu(t), x(0) = 0,$$

 $y(t) = Cx(t) + Du(t),$

and the function $V(t) = x^T(t)Px(t)$. Show that $0 \ge \dot{V} + y^Ty - u^Tu$ if and only if

$$\begin{bmatrix} x \\ u \end{bmatrix}^T \begin{bmatrix} A^T P + PA + C^T C & PB + C^T D \\ B^T P + D^T C & D^T D - I \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \le 0.$$

(iii) Show that for all $T \ge 0$,

$$\int_0^T \dot{V} dt \ge 0.$$

How can we combine this with (i)–(ii) to prove that $||G||_{\infty} \leq 1$? Hint: Consider $\lim_{T\to\infty} \int_0^\infty \dot{V} + y^T y - u^T u dt$.

3. This question is about reducing the conservatism of the small gain theorem using loop transforms. Suppose that Δ is a real number that satisfies $0 < \Delta < 2$. Show that the small gain theorem implies that the negative feedback interconnection of G and Δ is stable if G is stable and

$$|G(j\omega)| \le \frac{1}{2}.$$

Consider now the transformation

$$\tilde{\Delta} = \frac{1 - \frac{3}{2}\Delta}{1 + \frac{1}{2}\Delta},$$
$$\tilde{G}(s) = \frac{\frac{1}{2} - G(s)}{G(s) + \frac{3}{2}}$$

Show that $-1 < \tilde{\Delta} < 1$, and that the small gain theorem implies that the feedback interconnection of $\tilde{\Delta}, \tilde{G}$ is stable if G(s) is stable and

$$\operatorname{Re}(G(j\omega)) \ge -\frac{1}{2}.$$

Show that stability of the negative feedback interconnection of G, Δ is equivalent to that of $\tilde{G}, \tilde{\Delta}$. How has this loop transform reduced conservatism?

4. This problem is about proving the converse direction of the small gain theorem. We will prove that (ii) \Longrightarrow (i) by showing that if $||G(s)||_{\infty} > 1$, then there exists a $\Delta(s) \in \mathcal{R}^{m \times n}$ satisfying $||\Delta(s)||_{\infty} < 1$ for which

$$(I + G(s)\Delta(s))^{-1}$$

is unstable.

(i) We will first solve the case that Δ is allowed to be a complex matrix. To do this, show that if $||G(s)||_{\infty} > 1$, then there exists a frequency ω_0 and a matrix $\Delta_{\mathbb{C}}$ such that

$$\det(I + G(j\omega_0)\Delta_{\mathbb{C}}) = 0$$

and $\overline{\sigma}(\Delta_{\mathbb{C}}) < 1$.

(ii) We will now try to construct a $\Delta(s) \in \mathbb{R}^{m \times n}$ to interpolate $\Delta_{\mathbb{C}}$ from (i). Suppose that $X \in \mathbb{C}^{n \times n}$ satisfies $X^*X = I$ and $D \in \mathbb{R}^{n \times n}$ satisfies $D^T D = I$. Show that if (X - D) is invertible and scalar, then

$$Q = \left(\frac{s}{\omega_0} \text{Im}\left((X - D)^{-1}\right) + \text{Re}\left((X - D)^{-1}\right)\right)^{-1} + D$$

satisfies $Q(j\omega)^* Q(j\omega) = I$ for all ω and $Q(j\omega_0) = X$. Check that the same claims hold in the matrix case numerically (or prove it!). How can we use this construction to find a $\Delta(s) \in \mathbb{R}^{m \times n}$ such that

$$\Delta(j\omega_0) = \Delta_{\mathbb{C}}, \, \overline{\sigma}(\Delta(j\omega)) = \overline{\sigma}(\Delta_{\mathbb{C}})? \tag{1}$$

Hint: Consider the SVD of $\Delta_{\mathbb{C}}$.

(iii) The problem with our previous construction is that $\Delta(s)$ is not guaranteed to be stable. We will now show that we remove any such unstable poles without affecting the interpolation requirements. Given $p_i \in \mathbb{C}$, define

$$F_{p_i}(s) = -\frac{(s-p_i)}{(s+p_i^*)} \frac{(s/\omega_0 - \omega_0/p_i)}{(s/\omega_0 + \omega_0/p_i^*)}$$

Show that $|F_{p_i}(j\omega)| = 1$ for all ω and

$$F_{p_i}(j\omega_0) = \frac{p_i/\omega_0 + \omega_0/p_i}{p_i^*/\omega_0 + \omega_0/p_i^*}.$$

Explain how to combine functions of this form with the construction from (ii) to obtain a stable $\Delta(s) \in \mathcal{R}^{m \times n}$ that meets eq. 1.