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Plan of attack:

Today’s topic: Evaluate H∞ based robust stability and
performance claims.

H∞-norm performance specifications.
The small gain theorem.
Robust stability specifications.
Proof of the small gain theorem:

Argument principle.
Loop transforms.
Instability theorems.
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H∞ performance specifications

Suppose L(jω) is given by the following:
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Is ‖10(s/20+1)
s+1 S(s)‖∞ ≤ 1??
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The Bounded real Lemma

To check bounded gain, can use the singular value plot or the
bounded real lemma.

Bounded real Lemma: Given any G ∈ Rn×m, the following are
equivalent:

(i) ‖G‖∞ ≤ 1.
(ii) For any minimal realisation of G there exists a P � 0 such

that [
AT P + PA + CT C PB + CT D

BT P + DCT DT D − I

]
� 0.
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The Small Gain Theorem

G(s)

∆(s)

D(s) U(s) Y (s)
−

Given G ∈ Rn×m, the following are equivalent:

(i) The feedback interconnection of G and ∆ is stable for all
∆ ∈ Rm×n such that ‖∆‖∞ < 1.

(ii) ‖G‖∞ ≤ 1.
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The Small Gain Theorem

Can be generalized significantly. For example:

Real rationality of G and ∆ can be removed.
Linearity of ∆ can be removed.
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Robust Stability Specifications

H∞-norm performance specifications are robust
stability specifications.
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Robust Stability Specifications

By the small gain theorem, ‖Fl(P (s), K(s))‖∞ ≤ 1 is equivalent
to stability of the following for ‖∆‖∞ < 1:

Fl(P (s), K(s))

∆(s)

D(s) Z(s)
−
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Robust Stability Specifications

I

∆(s)

P (s)C(s)

−
−
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Robust Stability Specifications

I

∆(s)

P (s) C(s)

−

V (s)X(s)

−
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Robust Stability Specifications

(I + ∆(s))−1P (s)

C(s)
V (s)X(s)

−
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Robust Stability Specifications

P∆(s)

C(s)
V (s)X(s)

−

‖W (s)S(s)‖∞ ≤ 1 =⇒ stability for all

P∆(s) ∈ {Q(s) : Q(s) = (I + ∆(s))−1P (s), ‖∆(s)‖∞ < 1}.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Robust Stability Specifications

Questions:

1 What are the robust stability equivalents of an H∞-norm
specification on each element of the gang of four?

2 What about the gang of four stability margin

bP,C =
∥∥∥∥∥
[
P
I

]
(I − CP )−1

[
−C I

]∥∥∥∥∥
−1

∞
?

Richard Pates and Bo Bernhardsson Robust Control 2018



lionwhite

Robust Stability Specifications

Questions:

1 What are the robust stability equivalents of an H∞-norm
specification on each element of the gang of four?

2 What about the gang of four stability margin

bP,C =
∥∥∥∥∥
[
P
I

]
(I − CP )−1

[
−C I

]∥∥∥∥∥
−1

∞
?

Exercise
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The Argument Principle

Consider
g(s) = s − 4

(s − 2)(s − 3) .

Let us evaluate g(s) on a square contour.
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The Argument Principle

Given g(s) ∈ R and a closed contour C,

w.n.o.g(s) = Z − P

where Z, P are the number of zeros and poles of g(s) contained
in C.

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Argument Principle

Given G(s) ∈ Rn×n and a closed contour C,

w.n.o. det(G(s)) = Z − P

where Z, P are the number of zeros and poles of G(s)
contained in C.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Proof of the Small Gain Theorem (ii)⇒ (i)

We will use the argument principle to show that (ii) implies that

det(I + G(s)∆(s)) 6= 0

for all s in the closed right half plane.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Proof of the Small Gain Theorem (ii)⇒ (i)

The Nyquist contour.
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Proof of the Small Gain Theorem (ii)⇒ (i)

Consider
gλ(s) = det (I + λG(s)∆(s)) .
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Proof of the Small Gain Theorem (ii)⇒ (i)

Consider
gλ(s) = det (I + λG(s)∆(s)) .

Now vary λ from 0 to 1.
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Proof of the Small Gain Theorem (ii)⇒ (i)
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Proof of the Small Gain Theorem (ii)⇒ (i)

Recall that for C ∈ Cn×n

| det C| =
∏

i

σi(C).

Therefore if σ(C) > 0, det C 6= 0.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Proof of the Small Gain Theorem (ii)⇒ (i)

Now recall that σ(A + B) ≥ σ(A) − σ(B). Therefore since
‖G‖∞ ≤ 1 and ‖∆‖∞ < 1,

|gλ(jω)| ≥ 1 − λσ(G(jω)∆(jω)) > 0.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Proof of the Small Gain Theorem (i)⇒ (ii)

Therefore for every point on the contour, gλ(s) 6= 0,

=⇒ w.n.o.g0(s) = w.n.o.g1(s).

Richard Pates and Bo Bernhardsson Robust Control 2018
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Proof of the Small Gain Theorem (i)⇒ (ii)

Therefore for every point on the contour, gλ(s) 6= 0,

=⇒ w.n.o.g0(s) = w.n.o.g1(s).

By the argument principle, this implies that

0 = Z − P.

Since P = 0, =⇒ the interconnection is stable.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Proof of the Small Gain Theorem (i)⇒ (ii)

Exercise

Richard Pates and Bo Bernhardsson Robust Control 2018



lionwhite

Loop Transforms

Can extend the small gain theorem using loop transforms:

G(s)

∆(s)

D(s) U(s) Y (s)
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Loop Transforms

Can extend the small gain theorem using loop transforms:

G(s)

−I

I

∆(s)

D(s) U(s) Y (s)
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Loop Transforms

Can extend the small gain theorem using loop transforms:

G(s)(I + G(s))−1

∆(s) + I

D(s) Ỹ (s)

Ũ(s)

Stable if ‖G(s)(I + G(s))−1‖∞ ≤ 1 and ‖I + ∆(s)‖∞ < 1.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Loop Transforms

1 Are we sure (Ỹ (s), Ũ(s)) bounded implies that (Y (s), U(s))
is bounded?

2 How can we interpret such loop transforms?

Richard Pates and Bo Bernhardsson Robust Control 2018
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Using the Projective Line

Recall from last time that we used the projective line to
understand G(s)(I + G(s))−1. Use the chain description:[

I 0
I I

] [
G(s)

I

]

Richard Pates and Bo Bernhardsson Robust Control 2018
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Using the Projective Line

Signal interpretation:[
Ỹ

Ũ

]
=
[
I 0
I I

] [
Y
U

]
,

[
Y
U

]
=
[
G
I

]
U.

1 The first equation describes the loop transform.
2 In the second, U generates the ‘behaviour’ (use coprime

factorisation for unstable G)

Richard Pates and Bo Bernhardsson Robust Control 2018
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Using the Projective Line

Let M ∈ Rn×n define a loop transform[
Ỹ (s)
Ũ(s)

]
= M(s)

[
Y (s)
U(s)

]
.

Boundedness of (Ỹ (s), Ũ(s)) is equivalent to boundedness of
(Y (s), U(s)) if and only if M, M−1 ∈ RH∞.

Richard Pates and Bo Bernhardsson Robust Control 2018



lionwhite

The Passivity Theorem

Small gain of Y (s) = G(s)U(s) is equivalent to[
Y (s)
U(s)

]∗ [
−I 0
0 I

] [
Y (s)
U(s)

]
≥ 0.

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Passivity Theorem

Suppose [
Y (s)
U(s)

]
= 1√

2

[
I I

−I I

] [
Ỹ (s)
Ũ(s)

]
?

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Passivity Theorem

Small gain is equivalent to:(
1√
2

[
I I

−I I

] [
Ỹ (s)
Ũ(s)

])∗ [
−I 0
0 I

]
1√
2

[
I I

−I I

] [
Ỹ (s)
Ũ(s)

]
≥ 0.

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Passivity Theorem

Small gain is equivalent to:[
Ỹ (s)
Ũ(s)

]∗ [
0 I
I 0

] [
Ỹ (s)
Ũ(s)

]
≥ 0.
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The Passivity Theorem

Small gain is equivalent to:[
Ỹ (s)
Ũ(s)

]∗ [
0 I
I 0

] [
Ỹ (s)
Ũ(s)

]
≥ 0.

=⇒
∫ ∞

−∞
ỹT (t)ũ(t)dt ≥ 0.

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Passivity Theorem

What about the transfer function given by the chain description:

1√
2

[
I I

−I I

]−1 [
G(s)

I

]
?

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Passivity Theorem

What about the transfer function given by the chain description:

1√
2

[
I I

−I I

]−1 [
G(s)

I

]
?

Exercise
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The Passivity Theorem

Small gain of the pair (y, u) is equivalent to passivity of
(ỹ, ũ).
(y, u) are called scattering variables in this context.
Connections to IQCs, the KYP lemma, chain scattering, ...

Richard Pates and Bo Bernhardsson Robust Control 2018
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Instability Theorems

Observe that in our proof of the small gain theorem we only
used our H∞-norm bound to bound the largest singular value
of G on the Nyquist contour.

Richard Pates and Bo Bernhardsson Robust Control 2018



lionwhite

Instability Theorems

L∞ is the space of essentially bounded measurable functions
on the imaginary axis, with norm

‖f(jω)‖L∞ = ess sup
ω∈R

|f(jω)|.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Instability Theorems

For real rational functions:

‖f(jω)‖L∞ = sup
ω∈R

|f(jω)|.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Instability Theorems

For matrices of real rational functions:

‖F (jω)‖L∞ = sup
ω∈R

σ(F (jω)).

Richard Pates and Bo Bernhardsson Robust Control 2018
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Instability Theorems

By our previous argument, ‖G(jω)‖L∞ ≤ 1 and ‖∆(jω)‖L∞ < 1
is sufficient to conclude that

w.n.o. det(I + G∆) = 0 = Z − P.

Richard Pates and Bo Bernhardsson Robust Control 2018
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Instability Theorems

By our previous argument, ‖G(jω)‖L∞ ≤ 1 and ‖∆(jω)‖L∞ < 1
is sufficient to conclude that

w.n.o. det(I + G∆) = 0 = Z − P.

=⇒ that the number of closed loop poles equals the number of
open loop poles.

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Small Gain Theorem (2)

G(s)

∆(s)

D(s) U(s) Y (s)
−

Given G ∈ Rn×m, the following are equivalent:

(i) The feedback interconnection of G and ∆ has P unstable
poles for all ∆ ∈ Rm×n such that ‖∆‖∞ < 1.

(ii) ‖G‖L∞ ≤ 1 and G has P unstable poles.

Richard Pates and Bo Bernhardsson Robust Control 2018
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The Small Gain Theorem (2)

1 Can broaden applicability with the same projective line
arguments.

2 Real rational and linear requirements can be relaxed.
3 Can check ‖G‖L∞ ≤ 1 using LMIs.

Richard Pates and Bo Bernhardsson Robust Control 2018


