
Optimal Control 2018

Kaoru Yamamoto

Optimal Control 2018

L1: Functional minimization, Calculus of variations (CV) problem

L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle, Existence of optimal control

L4: Maximum principle (proof)

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation

L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):
Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):
Study and present your own optimal control problem. Apr 5 (Thu)?
Written take-home exam (60%).

Optimal control problem

Find a control u ∈ U ⊂ Rm that minimizes the cost

J(u) :=
∫ tf

t0
L(t, x(t), u(t))︸ ︷︷ ︸

running cost

dt+K(tf , xf)︸ ︷︷ ︸
terminal cost

subject to
ẋ = f(t, x, u), x(t0) = x0, x ∈ Rn.

• Infinite-dimensional optimization problem. Discretization needed.

• When and how?

Optimal
Control
Problem

Dynamic Programming
Hamilton-Jacobi-Bellman equation

Indirect methods
(optimize, then discretize)

calculus of variations

Maximum principle

Direct methods
(discretize, then optimize)

single shooting
(sequential)

collocation
(simultaneous)

multiple shooting
(sequential/

simultaneous)

Optimal
Control
Problem

Dynamic Programming
Hamilton-Jacobi-Bellman equation

Indirect methods
(optimize, then discretize)

calculus of variations

Maximum principle

Direct methods
(discretize, then optimize)

single shooting
(sequential)

collocation
(simultaneous)

multiple shooting
(sequential/

simultaneous)

Hamilton-Jacobi-Bellman (HJB) equation

• Value function (optimal cost-to-go): V (t, x) = inf
u[t,t1]

J(t, x, u).

• HJB equation:

−Vt(t, x) = inf
u∈U
{L(t, x, u) + 〈Vx(t, x), f(t, x, u)〉}.

• Solve this partial differential equation (PDE) backwards for
t ∈ [t0, t1], starting from

V (t1, x) = K(x).

(Often high dimensional PDE, intractable!)

• Optimal controls

u∗(x, t) = argmin
u∈U
{L(t, x, u) + 〈Vx(t, x), f(t, x, u)〉}.

Optimal
Control
Problem

Dynamic Programming
Hamilton-Jacobi-Bellman equation

Indirect methods
(optimize, then discretize)

calculus of variations

Maximum principle

Direct methods
(discretize, then optimize)

single shooting
(sequential)

collocation
(simultaneous)

multiple shooting
(sequential/

simultaneous)

Necessary conditions for optimality

Recall the maximum principle:

The Hamiltonian: H(x, u, p, p0) = 〈p, f(x, u)〉+ p0L(x, u).

Assume that the basic problem has a solution (u∗(t), x∗(t)),
u∗(t) ∈ U, x∗(t) ∈ Rn. Then ∃p∗ : [t0, tf]→ Rn, ∃p∗0 ≤ 0 satisfying
(p∗0, p∗(t)) 6= (0, 0) ∀t ∈ [t0, tf] and

1) ẋ∗ = Hp(t, x∗, u∗, p∗), ṗ∗ = −Hx(t, x∗, u∗, p∗),
x∗(t0) = x0, x

∗(tf) ∈ S1.

2) H(x∗(t), u∗(t), p∗(t), p∗0) ≥ H(x∗(t), u(t), p∗(t), p∗0)
∀t ∈ [t0, tf], ∀u ∈ U.

3) H(x∗(t), u∗(t), p∗(t), p∗0) = 0 ∀t ∈ [t0, tf]

4) 〈p∗(tf), d〉 = 0 ∀d ∈ Tx∗(tf)S1 Tx∗(tf)S1 : tangent space to S1.

Indirect methods

1) ẋ∗ = Hp(t, x∗, u∗, p∗), ṗ∗ = −Hx(t, x∗, u∗, p∗),
x∗(t0) = x0, x

∗(tf) ∈ S1.

4) 〈p∗(tf), d〉 = 0 ∀d ∈ Tx∗(tf)S1 Tx∗(tf)S1 : tangent space to S1.

• n boundary conditions imposed on (x∗, p∗) at t = t0 and n more
at t = tf . ⇒ two point boundary value problem with 2n ordinary
differential equations (ODEs).

• Can solve with gradient methods, shooting methods, or
collocation (e.g., MATLAB bvp4c).

Sounds good, but...

• Good initial guess needed. How to guess p∗(t0)?

• Path constraints (discontinuity in state/adjoint equations or control
functions) difficult to handle.

Optimal
Control
Problem

Dynamic Programming
Hamilton-Jacobi-Bellman equation

Indirect methods
(optimize, then discretize)

calculus of variations

Maximum principle

Direct methods
(discretize, then optimize)

single shooting
(sequential)

collocation
(simultaneous)

multiple shooting
(sequential/

simultaneous)

Direct methods

• First discretize, then optimize.

• Approximate the original infinite-dimensional problem by a
finite-dimensional, nonlinear programming problem (NLP).

Two main approaches:

• Sequential methods: discretize controls, simulate dynamic
system using embedded numerical integrator, and update control
iteratively based on sensitivities.

– direct single shooting.

• Simultaneous methods: discretize all system variables.
– direct collocation, (direct multiple shooting)

Direct single shooting

• Control parametrization: Parametrize control u(t) using a finite
number of parameters by, e.g., piecewise polynomials q, i.e., q
determines u (approximately), and determines x through ODEs.

• Parameter optimization problem:

min
u
J(u) s.t. ẋ = f(x, u), x(t0) = x0

⇓
min

q
J(q) s.t. ẋ = f(x, q), x(t0) = x0

Optimizer Integrator

qiq0

q∗ J(qi)

+ very simple to implement, manageable size of NLP
− poor convergence without gradients, cannot handle unstable

systems, state constraints difficult
• sometimes the only feasible way to go

Direct multiple shooting

• Control parametrization: Divide the time horizon into N
intervals t0 = t0 < t1 < · · · < tN = tf . Parametrize control by
piecewise constants; ũ(t) = qi, t ∈ [ti, ti+1), i = 0, . . . , N − 1.

• State discretization: Introduce N + 1 vectors s0, s1, . . . , sN

and solve the decoupled state equations

ẋi(t) = f(xi(t), qi), t ∈ [ti, ti+1]

with xi(ti) = si (initial conditions) and
si+1 = xi(ti+1) (continuity constraint).

• Parameter optimization problem:

min
s̄,q̄

J(q̄)

s.t. Cineq(si, qi) ≤ 0, Cf (sN) = 0.
+ path constraints approximated by point constraints, memory

efficient
± large NLP, but sparse

Direct collocation

• Discretize the state and control at a set of suitably chosen points
in the time horizon [t0, tf]⇒ NLP

• The resulting NLP is then solved using well-known solvers, e.g.,
IPOPT, SNOPT, KNITRO.

• How to approximate the state, given ẋ = f(x, u), x(t0) = x0?
• h methods
• p methods
• hp methods

• In the end, we need an efficient way to approximate
1. the integration in the cost function

∫ tf

t0
Ldt,

2. the differential equation ẋ = f(x, u), x(t0) = x0, and
3. constraints on the state and control.

– pseudospectral methods

State approximation – h method

• Divide the time horizon [t0, tf] into K mesh intervals.
• The state is approximated using the same fixed-degree (often low-

order) polynomial in each mesh interval.
• Finer mesh→ more accurate approximation
• e.g., Euler methods, Runge-Kutta methods

Example:

ẋ ≈ xk+1 − xk

h
, h := (tf − t0)/K

⇒ xk+1 = xk + hf(xk, uk)
⇒ C(x̄, ū) = 0

where

C(x̄, ū) =


x1 − (x0 + hf(x0, u0))
x2 − (x1 + hf(x1, u1))

...
xK − (xK−1 + hf(xK−1, uK−1))



State approximation – p method

• Divide the time horizon [t0, tf] into K (fixed) mesh intervals.

• Approximate the state in each interval by an N th order polynomial

• Higher-order polynomial→ more accurate approximation

xi,1
xi,2 xi,3

x(t)

ti ti+1
ti,1 ti,2 ti,3 ti+1,1ti+1,2 ti+1,3

x(t) =
N+1∑
j=1

xi,jPj(t), t ∈ [ti, ti+1], Pj : interpolation polynomials.

State approximation – hp method

• Hybrid between an h method and a p method.

• Both the number of mesh K and the degree of the approximating
polynomial NK within each mesh interval can change.

Pseudospectral methods

• An efficient way to approximate
1. the integration in the cost function

∫ tf

t0
Ldt,

2. the differential equation ẋ = f(x, u), x(t0) = x0, and
3. constraints on the state and control.

• The state and control parametrized by a polynomial
approximation, e.g., Lagrange polynomial approximation.

• The cost function approximated by numerical quadrature, e.g.,
Gaussian quadrature.

Software packages:

• GPOPS− II (MATLAB)

• PROPT (MATLAB)

• PSOPT (C++)

• NLOptControl.jl (Julia)

NLP solvers

• IPOPT (Interior Point OPTimizer) iteratively solves NLPs using
primal-dual interior-point method with filter-based line search

• A decent initial guess of the solution is important to find a decent
local optimum

• Usually better to guess an optimal input, and then simulate the
system using this input

• Or solve a simpler but related optimization problem and use that
as a guess

NLOptControl.jl

• hp-pseudospectral method written in julia

• https://juliampc.github.io/MPCDocs.jl/v0.1.3/ for
the installation guide and some tutorials

• Ipopt.jl or KNITRO.jl for the NLP solver

• JuMP.jl (Julia for Mathematical Optimization) and
DifferentialEquations.jl as a part of the software.

https://juliampc.github.io/MPCDocs.jl/v0.1.3/

Example: time optimal control of double integrator

Problem: minimize tf
subject to ẋ1 = x2, ẋ2 = u, u ∈ [−1, 1],

x1(0) = −5, x2(0) = 0, x1(tf) = 0, x2(tf) = 0

1 using NLOptControl, PrettyPlots
2
3 n=define(numStates=2,numControls=1,X0=[-5,0],XF=[0,0],CL=[-1],CU=[1]);
4
5 states!(n,[:x,:v];descriptions=["x(t)","v(t)"]);
6 controls!(n,[:u];descriptions=["u(t)"]);
7
8 dx=[:(v[j]),:(u[j])]
9 dynamics!(n,dx)

10
11 configure!(n;(:finalTimeDV=>true));
12
13 @NLobjective(n.mdl, Min, n.tf);
14
15 optimize!(n);
16
17 allPlots(n)

Result

0 1 2 3 4

-5

-4

-3

-2

-1

0

time (s)

x(
t)

mpc

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

time (s)

v(
t)

mpc

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

time (s)

u(
t)

max
min
mpc

Example: minimum time-fuel control of double integrator

Problem: minimize
∫ tf

0 (1 + |u(t)|)dt
subject to ẋ1 = x2, ẋ2 = u, u ∈ [−1, 1],

x1(0) = −5, x2(0) = 0, x1(tf) = 0, x2(tf) = 0

1 using NLOptControl, PrettyPlots
2
3 n=define(numStates=2,numControls=1,X0=[-5,0],XF=[0,0],CL=[-1],CU=[1]);
4
5 states!(n,[:x,:v];descriptions=["x(t)","v(t)"]);
6 controls!(n,[:u];descriptions=["u(t)"]);
7
8 dx=[:(v[j]),:(u[j])]
9 dynamics!(n,dx)

10
11 configure!(n;(:Nck=>[80]),(:finalTimeDV=>true));
12
13 obj=integrate!(n,:(1+abs(u[j])));
14
15 @NLobjective(n.mdl, Min, obj);
16
17 optimize!(n);
18
19 allPlots(n)

Result

0 1 2 3 4 5

-5

-4

-3

-2

-1

0

time (s)

x(
t)

mpc

0 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

time (s)

v(
t)

mpc

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

time (s)

u(
t)

max
min
mpc

Possible project (suggested by Bo)

Swing-up of two pendulum on a moving cart. See the handout.

• The simplified model (6)–(8) can be used.

• Suggestion for the parameters: l1 = 0.5 m, l2 = 0.1 m and
g = 10 m/s2.

• Restriction on u: |u| ≤ umax = 20 m/s2.

• Restriction on x: |x| ≤ xmax ∈ [0.1, 1] m.

• One can study the cost function with free final time

J(u) =
∫ tf

0
(1 + αu2)dt

Notice that α = 0 gives the minimum time criterion, and α > 0
should give a smoother swing-up.

• How does the optimal swing-up strategies change when xmax
changes?

References

1. Johan Åkesson. “Numerical Methods for Dynamic Optimization”
(Lecture course at LTH, Fall 2009) http://www.control.lth.
se/user/jakesson/DynamicOptimization2009/

2. Fredrik Magnusson. “Using the Numerical Methods in
JModelica.org for Optimal Control Problems” (Lecture 7 in PhD
course “Optimal Control” at LTH, 2014)
http://www.control.lth.se/Education/DoctorateProgram/
optimal-control-2018/optimal-control-2014.html

3. Michael A. Patterson and Anil V. Rao. 2014. “GPOPS-II: A
MATLAB Software for Solving Multiple-Phase Optimal Control
Problems Using hp-Adaptive Gaussian Quadrature Collocation
Methods and Sparse Nonlinear Programming.” ACM Trans. Math.
Softw. 41, 1, Article 1.

http://www.control.lth.se/user/jakesson/DynamicOptimization2009/
http://www.control.lth.se/user/jakesson/DynamicOptimization2009/
http://www.control.lth.se/Education/DoctorateProgram/optimal-control-2018/optimal-control-2014.html
http://www.control.lth.se/Education/DoctorateProgram/optimal-control-2018/optimal-control-2014.html

