Optimal Control 2018

Kaoru Yamamoto



Optimal Control 2018

L1: Functional minimization, Calculus of variations (CV) problem
L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle, Existence of optimal control

L4: Maximum principle (proof)

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation
L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):

Solve 50% of problems in advance. Hand-in later.

Mini-project (20%):

Study and present your own optimal control problem. Apr 5 (Thu)?
Written take-home exam (60%).



Optimal control problem

Find a control © € U C R™ that minimizes the cost

T(u) = /ttf L(t, (t), u(t)) dt + K (t7,x;)

running cost terminal cost

subject to
T = f(taxau)a .’L’(to) = X0, T € R"™.

* Infinite-dimensional optimization problem. Discretization needed.
* When and how?



B Dynamic Programming
Hamilton-Jacobi-Bellman equation

{ calculus of variations J

Indirect methods

Optimal || | (optimize, then discretize) { Maximum principle}
Control
Problem single shooting

| (sequential)

Direct methods | | collocation
(discretize, then optimize) (simultaneous)
multiple shooting

— (sequential/
simultaneous)




Dynamic Programming
Hamilton-Jacobi-Bellman equation

{ calculus of variations }

Indirect methods

Optimal | [ | (optimize, then discretize) { Maximum principle }
Control - p
Problem single shooting

| (sequential)

p
Direct methods | | collocation
(discretize, then optimize) (simultaneous)

.

multiple shooting
— (sequential/
simultaneous)

-




Hamilton-Jacobi-Bellman (HJB) equation

+ Value function (optimal cost-to-go): V (¢, z) = uinf J(t,z,u).
[t:t1]

+ HJB equation:
—Vi(t.w) = inf {L(t,2,u) + (Va(t,2), f(t,2,0))).

+ Solve this partial differential equation (PDE) backwards for
t € [to, 1], starting from

V(t,z) = K(2).

(Often high dimensional PDE, intractable!)
+ Optimal controls

u*(z,t) = arggleill}{L(t,m,u) + (Vu(t,x), f(t,z,u))}.



[ Dynamic Programming
Hamilton-Jacobi-Bellman equation

(&

calculus of variations

~

Indirect methods

Optimal ] (optimize, then discretize) Maximum principle J
Control b _
Problem single shooting

| (sequential) }

p
Direct methods | | collocation
(discretize, then optimize) (simultaneous)

.

multiple shooting
— (sequential/
simultaneous)

-




Necessary conditions for optimality

Recall the maximum principle:
The Hamiltonian: H (z, u, p, po) = (p, f(x,u)) + poL(x, ).

Assume that the basic problem has a solution (u*(t), z*(t)),
u*(t) € U, 2*(t) € R™. Then 3p* : [to, ts] — R™, Ip§ < 0 satisfying
(PG, p* (1)) # (0,0) Vi € [to, t4] and

].) T = Hp(t’ x*,u*,p*), p* = fo(t,SIT*,U*,p*),
x*(to) = xo,x"(ty) € Si.

2) H(xz"(t),u"(t),p"(t),po) = H(x"(t),u(t),p*(t), pp)
Vt € [to, tf], Vu € U.

3) H(z*(t), u”(t),p*(t), pp) = 0 Vi € [to, t]
4) (p*(tr),d) =0 Vd € Tpe(s,)S1 Tip=(,)S1 : tangent space to Si.



Indirect methods

1) J,‘* - Hp(tJ 1"*7U*7p*)7 p* = _Hl’(t7‘r*7u*’p*)’
x*(to) = xg, :B*(tf) € 51.
4) <p*(tf)7 d> =0 Vde T:p*(tf)Sl Tx*(tf)Sl : tangent space to Sl.

* m boundary conditions imposed on (z*, p*) at t = ¢y and n more
att = ty. = two point boundary value problem with 2n ordinary
differential equations (ODEs).

+ Can solve with gradient methods, shooting methods, or
collocation (e.g., MATLAB bvp4c).
Sounds good, but...

+ Good initial guess needed. How to guess p*(ty)?

+ Path constraints (discontinuity in state/adjoint equations or control
functions) difficult to handle.



Optimal

Control
Problem

Dynamic Programming
Hamilton-Jacobi-Bellman equation

calculus of variations }

Indirect methods
(optimize, then discretize) Maximum principle }

( single shooting
(sequential)

|\

Direct methods ] collocation
(discretize, then optimize) (simultaneous)

multiple shooting
— (sequential/
simultaneous)

|\




Direct methods

- First discretize, then optimize.

+ Approximate the original infinite-dimensional problem by a
finite-dimensional, nonlinear programming problem (NLP).

Two main approaches:

+ Sequential methods: discretize controls, simulate dynamic
system using embedded numerical integrator, and update control
iteratively based on sensitivities.

— direct single shooting.
+ Simultaneous methods: discretize all system variables.
— direct collocation, (direct multiple shooting)



Direct single shooting

Control parametrization: Parametrize control u(¢) using a finite
number of parameters by, e.g., piecewise polynomials ¢, i.e., ¢
determines u (approximately), and determines x through ODEs.
Parameter optimization problem:

min J(u) st @ = f(x,u),z(ty) = zo

min J(g) st. & = f(,q), z(to) = 2o

do qi
_—
Optimizer Integrator
-
q* J (i)

very simple to implement, manageable size of NLP

poor convergence without gradients, cannot handle unstable
systems, state constraints difficult

sometimes the only feasible way to go



Direct multiple shooting

Control parametrization: Divide the time horizon into NV
intervals to = to < t1 < --- <ty = ty. Parametrize control by
piecewise constants; u(t) = ¢;, t € [ti, ti+1), i =0,...,N — 1.
State discretization: Introduce N + 1 vectors sg, S1,...,SN
and solve the decoupled state equations

#i(t) = f(@i(t), @), t € [ti,tiva]

with z;(¢;) = s; (initial conditions) and
si+1 = x;(ti+1) (continuity constraint).
Parameter optimization problem:

min J(q)
S,q
s.t. Cineq(sia(h) <0, Cf(SN) =0.

path constraints approximated by point constraints, memory
efficient
large NLP, but sparse



Direct collocation

Discretize the state and control at a set of suitably chosen points
in the time horizon [tg, t¢] = NLP

The resulting NLP is then solved using well-known solvers, e.g.,
IPOPT, SNOPT, KNITRO.
How to approximate the state, given & = f(z,u), z(ty) = xo?
+ h methods
+ p methods
+ hp methods
In the end, we need an efficient way to approximate
1. the integration in the cost function fttof Ldt,
2. the differential equation & = f(x,u), xz(ty) = xo, and
3. constraints on the state and control.

— pseudospectral methods



State approximation — 4 method

+ Divide the time horizon [tg, tf] into K mesh intervals.

+ The state is approximated using the same fixed-degree (often low-
order) polynomial in each mesh interval.

+ Finer mesh — more accurate approximation

* e.g., Euler methods, Runge-Kutta methods

Example:
i~ “Lh_x’“ h= (t; —to)/ K
= Tyl = Tk + hf(zk,uk)
= C(z,u) =0
where
r1 — (zo + hf(xo,u))
xo — (x1 + hf(x1,uq
Cloa) - 2 = a1+ bf (a1, )

rig — (xg—1 + h.f(xK—lauK—ﬁ)



State approximation — p method

+ Divide the time horizon [to, tf] into K (fixed) mesh intervals.
+ Approximate the state in each interval by an Nth order polynomial

+ Higher-order polynomial — more accurate approximation

tiitiotis | titi,1tit1,2 titl,
i tit1

PP e

N+1
Z x;;Pj(t), t € [ti,tit1], Pj : interpolation polynomials.



State approximation — hp method

+ Hybrid between an h method and a p method.

- Both the number of mesh K and the degree of the approximating
polynomial N within each mesh interval can change.



Pseudospectral methods

+ An efficient way to approximate
1. the integration in the cost function f:of Ldt,
2. the differential equation & = f(x, u), z(tg) = xo, and
3. constraints on the state and control.

+ The state and control parametrized by a polynomial
approximation, e.g., Lagrange polynomial approximation.

+ The cost function approximated by numerical quadrature, e.g.,
Gaussian quadrature.

Software packages:

« GPPOPS — II (MATLAB)
+ PROPT (MATLAB)

* PSOPT (C++)

+ NLOptControl.jl (Julia)



NLP solvers

IPOPT (Interior Point OPTimizer) iteratively solves NLPs using
primal-dual interior-point method with filter-based line search

A decent initial guess of the solution is important to find a decent
local optimum

Usually better to guess an optimal input, and then simulate the
system using this input

Or solve a simpler but related optimization problem and use that
as a guess



NLOptControl.jl

+ hp-pseudospectral method written in julia

* https://juliampc.github.io/MPCDocs.j1/v0.1.3/ for
the installation guide and some tutorials

+ Ipopt.jl or KNITRO.jl for the NLP solver

* JuMP.jl (Julia for Mathematical Optimization) and
DifferentialEquations.jl as a part of the software.


https://juliampc.github.io/MPCDocs.jl/v0.1.3/

© 00 N O ks W N

e e
N O Uk WO

Example: time optimal control of double integrator

Problem: minimize ¢ ¢
subject to &1 = g, &9 = u, u € [—1,1],
21(0) = =5, 22(0) = 0, 21(t5) = 0, 22(t7) = 0

using NLOptControl, PrettyPlots
n=define (numStates=2,numControls=1,X0=[-5,0] ,XF=[0,0],CL=[-1],CU=[1]);

states!(n, [:x,:v];descriptions=["x(t)","v(t)"]);
controls!(n, [:u] ;descriptions=["u(t)"]);

dx=[: (v[31),: uliD]

dynamics! (n,dx)
configure! (n; (:finalTimeDV=>true)) ;
@NLobjective(n.mdl, Min, n.tf);
optimize! (n);

allPlots(n)




Result

0

up

o

* ime (5

N time ()

2
time (5)



Example: minimum time-fuel control of double integrator

Problem: minimize fotf(l + |u(t)])dt
subject to &1 = x, @3 = u, u € [—1,1],
Il(O) = 75a IQ(O) = 07 xl(tf) = 07 IQ(tf) =0

1 using NLOptControl, PrettyPlots
2
3 n=define(numStates=2,numControls=1,X0=[-5,0],XF=[0,0],CL=[-1],CU=[1]);
4
5 states!(n,[:x,:v];descriptions=["x(t)","v(t)"]);
6 controls!(n, [:u];descriptions=["u(t)"]);
7
8 dx=[:(v[jl),:(uljD]
9 dynamics! (n,dx)
10
11 configure! (n; (:Nck=>[80]), (:finalTimeDV=>true));
12
13 obj=integrate! (n,: (1+abs(uljl)));
14
15 @NLobjective(n.mdl, Min, obj);
16
17 optimize!(n);
18
19 allPlots(n)




Result

()

3

time (5)

3
time (5)

3
time (5)



Possible project (suggested by Bo)

Swing-up of two pendulum on a moving cart. See the handout.

+ The simplified model (6)—(8) can be used.

+ Suggestion for the parameters: [{ = 0.5m,l = 0.1 m and
g=10m/s°.

« Restriction on u: |u| < Upax = 20 m/s2.

+ Restriction on z: |z] < Zmax € [0.1,1] m.

+ One can study the cost function with free final time

T(u) = /Otf(1 + au?)dt

Notice that @ = 0 gives the minimum time criterion, and o > 0
should give a smoother swing-up.

* How does the optimal swing-up strategies change when x,ax
changes?



References

1. Johan Akesson. “Numerical Methods for Dynamic Optimization”
(Lecture course at LTH, Fall 2009) http://www.control.lth.
se/user/jakesson/DynamicOptimization2009/

2. Fredrik Magnusson. “Using the Numerical Methods in
JModelica.org for Optimal Control Problems” (Lecture 7 in PhD
course “Optimal Control” at LTH, 2014)
http://www.control.lth.se/Education/DoctorateProgram/
optimal-control-2018/optimal-control-2014.html

3. Michael A. Patterson and Anil V. Rao. 2014. “GPOPS-II: A
MATLAB Software for Solving Multiple-Phase Optimal Control
Problems Using hp-Adaptive Gaussian Quadrature Collocation
Methods and Sparse Nonlinear Programming.” ACM Trans. Math.
Softw. 41, 1, Article 1.


http://www.control.lth.se/user/jakesson/DynamicOptimization2009/
http://www.control.lth.se/user/jakesson/DynamicOptimization2009/
http://www.control.lth.se/Education/DoctorateProgram/optimal-control-2018/optimal-control-2014.html
http://www.control.lth.se/Education/DoctorateProgram/optimal-control-2018/optimal-control-2014.html

