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Optimal Control 2018

L1:
L2:
L3:
L4:
L5:
L6:
L7:

Functional minimization, Calculus of variations (CV) problem
Constrained CV problems, From CV to optimal control
Maximum principle, Existence of optimal control

Maximum principle (proof)

Dynamic programming, Hamilton-Jacobi-Bellman equation
Linear quadratic regulator

Numerical methods for optimal control problems

Exercise sessions (20%):

Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):

Study and present your own optimal control problem.
Written take-home exam (60%).



Summary of L5: HJB equation and viscosity solutions

The value function V' of a fixed-time free-end point optimal
control is a unique viscosity solution of the HJB equation

—Vi(t,z) — 1irellfj{L(t,av,u)—i— < Vi(t,x), f(t,z,u) >} =0.
with the boundary condition V (¢, z) = K(z), Vz € R™.
Viscosity nonsmooth solutions for the first order PDE
F(z,v(z),Vu(z)) =0 (1)
were discussed to be approximated by smooth solutions of the viscous
fluid equation (what is useful in numerical simulations)
F(z,ve(z), Vu(x)) = eAve(x) as €l 0. (2)

Lack of sign symmetry of viscosity solutions is supported by the same
of the viscous fluid equation

Q+(t,x) = €Qqz(t, ) is well-posed
whereas Q(t,x) = —€Qqux(t, x) isill-posed
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Finite-horizon LQR problem

Linear plant dynamics

T = A(t)x + B(t)u, z(tp) = 9o € R"

Unconstrained control u € R™
Target set S = {t; x R"} (i.e, t; is fixed, z(t1) is free).

Cost functional
J(w) = [ [2T Q)2 (t) + uT () R(E)u(t)|dt + 27 (t) Ma(tr)

Assumptions

M=M">0,Q1t) =QTt) >0, R(t) = RT(t) >0 Vt € [ty, t1].



Candidate (MP-based) optimal feedback law

Hamiltonian
H(t,z,u,p) = pL A(t)x + p? B(t)u — 27 Q(t)x — u' R(t)u

where pg = —1 was chosen due to

Transversality condition
0 =p*(t1) — p Ko (x*(t1)) = p*(t1) — 2p M z*(t1) to be non-trivial.

Optimality conditions

0= Hy|« = BT (t)p* — 2R(t)u*, 0> Hyyl« = —2R(2)

Optimal control is thus (if exists) u* = 1 R~ BT (t)p*(t)

Adjoint equation p* = — H|* = 2Q(t)z* — AT (t)p*

Costate boundary condition p*(t1) = —K,(z*(t1)) = —2Mz*(t1)
Next goal: linearity p*(t) = —2P(t)x*(t) to be verified for all ¢ rather
than just for ¢; where actually P(¢1) = M.



Hamiltonian matrix 7 (¢)

Canonical state-costate equations

@\ [ A@t) IB@)R_1(t)BT(t) z* ) Tt
(p* ) - ( 20(1) —AT(t) ) <p* ) = H{t) ( v
z*(t) \ _ a*(t) | _
Hence ( () ) = ®(t,t1) ( () ) =

_ < Dy1(t,t1) Pra(t,t1) ) ( x*(t1) ) 3)
o1 (t,t1) (1)22(75, t1) *(t1)
t)o
r

where the inverse ®(¢,t;) = ® (¢, 1) of the fundamental matrix

®(ty,t) propagates the solutlon backward

Substituting the costate boundary condition p*(¢;) = —2Mx*(t1)
into (3) yields

.%'*(t) = ((I)H(t, tl) — 2(1)12(t, tl)M).%'*(tl)

p(t) = (@2t t1) — 280t 41) M ) 2* (t1)



State feedback

-1
Provided that 1 (@11(t, tl) — 2@12(75, tl)M) Vit

it follows

-1
p*(t) = (@21(t,t1)—2@22(t,t1)M> (éll(t,tl)—Qq)lg(t,tl)M) ZE*(t)

thus concluding that

-1
P(t) i= = (®a1(t, 1) =2Da(t, 1) M) (Prr (£, 1) —2®1a(t, 11) M)

1
2
Summarizing, the closed-loop optimal control is obtained

u*(t) = —R(t)BT (t)P(t)x*(t)



Riccati differential equation

Differentiating
p(t) = —2P(t)x"(t) (4)

yields .
p(t) = =2P(t)z*(t) — 2P(t)x*(¢t).

Let us now use the canonical equations

#\ [ AW) 1BORL®BT@) \ [
)\ 2001) —AT(t) P’

to arrive at

' 2Q(t)z*(t) — AT (t)p*(t) =
—2P(t)z*(t) — 2P()A(t)2* (t) — P()B(t)R™(t) BT (t)p" (t)

Applying (4) it follows that =



RDE derivation (continued)

Qt)a*(t) + AT (t)P(t)a*(t) =
—P(t)z*(t) — 2P(t)A(t)z* (t) + P(t)R () BT (t) BT (t) P(t)z* ()

Since z is arbitrary then the state z*(t) is arbitrary as well as far
as the state transition matrix is nonsingular.

4
The RDE must be satisfied for P(t) subject to P(¢1) = M:
P(t) = P(t)B(t) R~ (t) BT (t) P(t) — P()A(t) — AT(t)P(t) — Q(t).

Maximum principle resulted in a unique candidate for an optimal
control u*(t) = —R~1(t) BT (t) P(t)x*(t)

Other tools should be involved for proving the existence of P(¢)
for all ¢ as well as for proving the optimality of the control thus
derived



Value function and global optimality

LQR-specialized HJB equation

“Vi(t,z) {eTQWz+u" R(tyut(Va(t, ), A(t)z+B(t)u) }

= inf
ueR™
Boundary condition V(t;,z)) = 27 Mz = 27 P(t;)x
R(t) > 0 => the minimizing control u = —3R~'(t)BT (t)V,(t,z)
LQR-specialized HJB equation is thus simplified to

Vilt,2) = 2TQ(t)z + (Valt,a)) A()a

—(Valt.0)) BORT (0BT (Vat, o).

Just in case if u*(t) = —R~1(¢t)BT(t) P(t)x*(t) is the minimizing
control, then
1
§Vm(t,x) =Pt)x = V(t,z)=zTP(t)x.
The above quadratic VV does satisfy the HJB equation provided
that P(t) is symmetric (your homework, Exercise 6.2).



Global existence of RDE solutions

P(t)

Riccati differential equation

= P(t)B(t)R™' ()BT (t)P(t) — Q(t) — P(t)A(t) — AT(t)P(t)

Subject to P(t;) = M, alocal solution exists on some (¢, t1).

1.

To the contrary of the global existence, suppose that t # t and
some entries of P(t) escape to infinity as ¢ | ¢ ;

P(t) is known from Exercise 6.2 (homework) to be symmetric
and positive semidefinite = all principal minors must be
nonnegative;

if an off-diagonal entry P;;(¢) becomes unbounded near ¢, while
all diagonal entries stay bounded, then a ceratin 2 x 2 principal
minor must be negative near ¢;

thus, only diagonal entries, say P;;(t), can be unbounded =
the optimal cost-to-go e P;;(t)e; frome; = (0,...,1,...,0)T
escapes to infinity as t | ¢;

this contradicts to the cost optimality because, e.g., u = 0 on
[t,t1] would result in a lower finite cost.



Example

t1
b—u, Ju) = / (22() + u?(£)]dt — min
to
Y
RDE P=P2-1, P(t;)=0
Y
Optimal control ~ u = —tanh(t; — t)z

If R =—1,ie., J(u) = [[*[2%(t) — u?(t)]dt, the RDE P = —P? — 1

= Ju
has no global solutions

4

Assumption R > 0 is thus important.



Infinite-horizon autonomous LQR

Matrices A, B, QQ, R are constant and the terminal cost M = 0.
RDE P =PBR'BTP-Q—-PA—ATP, P(t;)=0
Solution of the above RDE is relabeled as P(¢,t;)
Optimal control v} (t) = —R™'BTP(t, 1))z
Value function V' (t, z) = 2T P(t,t1)z
Finite-horizon optimal cost V% (¢g, z¢) = o P(to,t1)0o

Clearly, the finite-horizon optimal cost is monotonically nondecreasing
inty.

Moreover, it remains bounded as t; — oo provided that A and B are

controllable. Indeed, it is upperbounded by the cost, matching to u(t),

steering the state to the origin by a time instant # and which is nullified
after .



Properties of the limit

Thus, 3limy, oo 7 P(t,t1)x. Moreover, Jlim;, oo P(t,17).

Indeed, 3 hmtl—mo eZTP(t, tl)ei = limtl_mo Pii (t, tl) and

3 lim (ei+e)) P(tt1)(e; + ej) = lim (P + 2Py + Py;)
1

t t1—0o0

Actually, P(t,t1) = P(t1 — t) by virtue of the time-invariance of
the RDE and hence there exists a steady state

lim P(t,t;) =P >0 WVt

t1—00

Passing to the limit as t; — co on both sides of the RDE,
algebraic Riccati equation (ARE) is obtained for the stedy state P:

PA+ATP+Q-PBR 'BTP=0 (5)

This is similar to passing from the general HJB equation to its
infinite-horizon counterpart.

Our hope that there exists a unique solution P = PT > 0 of (5).



Infinite-horizon problem and its solution

T(u) = /t :o [ (1)Qa(t) + " (1) Ru(t)]dt — min

Is V(zo) =2l Pzo optimal cost?
Is u*(t)=—R'BTPz optimal control?
(

Indeed, di[( “7T

~PBR™'B")P|a*(t) = ()" (t)|[PA+ ATP - 2PBR™' BT P|2"(¢)

HPz*(t)] = (@) (1)[P(A— BR™ BTP) + (A"

= —@)"(®)[Q + PBR'BTP|a* (1)

T
It follows /t 0 (@) (0Q* () + () (1) Ru* ()]
= T(:E*)T(t) Q+ PBR™'P|a*(t)dt

to

- _ /tT d [(m*)T(t)Px*(t)}dt — 2T Pay — ()7 (T)P2*(T) < T P



Infinite-horizon problem and its solution (cont’d)

Taking the limit as T' — o0, it is thus concluded
J(u*) < xf Pxg (6)

On the other hand, = P(ty, t1)x is the finite-horizon optimal cost
and Vz, subject to the same initial condition, one has

t1

xOTP(tO, tl)xo S /

to

< [T Q) + @) O Ru(t)]dt = I(w)

to

|27 (1)@ (t) + ()" () Ru(t)] dt

Passing to the limit as {{ — oo, it follows

x Pro < J(u)

By virtue of (6), the optimality of «* is concluded:

J(u*) = ad Pxo < J(u) Vu



Closed-loop stability

Example
oo
T =x+ u, J:/ u?dt — oo
0

Optimal control ©* = 0 = the closed-loop system & = x is unstable.

Let system & = Ax + Bu, be observable with the output y = Cz
such that Q = C7'C. Its optimal cost functional

J(u*) = / @) OCTCat () + ) (@) Ru (1)] dt < oo.

to
(S
y*(t) = Cx*(t) — 0,u*(t) -0 as t— oo
\I%

z*(t) -0 as t— oo = Closed-loop exponential stability



Infinite-horizon LQR: complete result

System dynamics & = Az + Bu
Cost functional
o0
J(u) = / [ (1)C" O (t) + u” (t) Ru(t)| dt
to

where (A, B) is controllable, (A, C) is observable, and
R=R">0.

Theorem
1. 3P = limy_,~ P(to,t1) of the solution of the RDE with the

terminal condition P(t1) = 0; this limit is a unique symmetric,

positive definite solution of the corresponding ARE;
2. The optimal cost V (z¢) = x{ Pxo;
3. The unique optimal control u*(t) = —R~'BT Px*(t);
4. The closed-loop system i* = (A — BR™'*BT P)x* is
exponentially stable.




Proof of the complete result

All has been proved except the solution uniqueness and positive
definiteness of P.

Proving P > 0
Suppose that x%Pmo = 0. Then for this initial condition xz, the

optimal cost

/ ) (@) OCTCa" () + (w) () Ru* (1) |dt = 0

to
\
Cz*=0, u*=0 (since R>0)

By observability, it follows that ¢y = 0, and hence = P > 0.



Proof of the complete result (cont’d)

P is a unique positive (semi)definite solution of the ARE.

Suppose that 3P > 0 (or even P > 0). Consider the new cost
functional

T (u) = /t . |27 (£)Qu(t) + u” (t) Ru(t) | dt + =7 (tr) Px(t1)
and its infinite-horizon counterpart:
7oty = i { | " [T (O)Qa(t) +u” () Ru(t)dt-+a” (1) Pa(ty)).

t1—00
Then

T (u") = /°° (@) ()Qa" (1) + (u)" () Ru” ()] dt | = af Pag
is the optimal cost with respect to J> because
T (u) > / " [T (0Qa(t) + u () Ru(t)]dt} > ] Pa.

to



Proof of the uniqueness of P (cont’d)

On the other hand, the optimal cost is given by
JU(u*) = g P(to; P,t1)xo

where P(tg; P,t;) denotes the solution of the corresponding RDE
subjectto P(t;) = P.

\
P(to;P,tl) = P

because P is an equilibrium of the RDE as it satisfies ARE by
assumption

4

P = P and the P-uniqueness is thus verified



Proof of the complete result (cont’d)

It remains to establish that the optimal control is unique.

By maximum principle, the optimal control satisfies
W' (1) = argmax { L(t, 2", u) + (Va(t,2”(1)), f(t,2" (1), u) ) }
to presently be specified to
u*(t) = arg max {(w*)Tt)Qx* (t) +ul Bu
uelU
+2(x*)T(t)PAx*(t) + 2(x*)T(t)PBu}

The latter uniquely identifies the optimal feedback



