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Optimal Control 2018

L1: Functional minimization, Calculus of variations (CV) problem

L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle, Existence of optimal control

L4: Maximum principle (proof)

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation

L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):
Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):
Study and present your own optimal control problem.
Written take-home exam (60%).



Summary of L5: HJB equation and viscosity solutions

The value function V of a fixed-time free-end point optimal
control is a unique viscosity solution of the HJB equation

−Vt(t, x)− inf
u∈U
{L(t, x, u)+ < Vx(t, x), f(t, x, u) >} = 0.

with the boundary condition V (t1, x) = K(x), ∀x ∈ Rn.

Viscosity nonsmooth solutions for the first order PDE

F (x, v(x),∇v(x)) = 0 (1)

were discussed to be approximated by smooth solutions of the viscous
fluid equation (what is useful in numerical simulations)

F (x, vε(x),∇v(x)) = ε∆vε(x) as ε ↓ 0. (2)

Lack of sign symmetry of viscosity solutions is supported by the same
of the viscous fluid equation

Qt(t, x) = εQxx(t, x) is well-posed

whereas Qt(t, x) = −εQxx(t, x) is ill-posed
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Finite-horizon LQR problem

Linear plant dynamics

ẋ = A(t)x+B(t)u, x(t0) = x0 ∈ Rn

Unconstrained control u ∈ Rm

Target set S = {t1 × Rn} ( i.e, t1 is fixed, x(t1) is free).

Cost functional
J(u) =

∫ t1
t0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt+ xT (t1)Mx(t1)

Assumptions

M = MT ≥ 0, Q(t) = QT (t) ≥ 0, R(t) = RT (t) > 0 ∀t ∈ [t0, t1].



Candidate (MP-based) optimal feedback law

Hamiltonian

H(t, x, u, p) = pTA(t)x+ pTB(t)u− xTQ(t)x− uTR(t)u

where p0 = −1 was chosen due to

Transversality condition
0 = p∗(t1)− p∗0Kx(x∗(t1)) = p∗(t1)− 2p∗0Mx∗(t1) to be non-trivial.

Optimality conditions
0 = Hu|∗ = BT (t)p∗ − 2R(t)u∗, 0 ≥ Huu|∗ = −2R(t)

Optimal control is thus (if exists) u∗ = 1
2R
−1BT (t)p∗(t)

Adjoint equation ṗ∗ = −Hx|∗ = 2Q(t)x∗ −AT (t)p∗

Costate boundary condition p∗(t1) = −Kx(x∗(t1)) = −2Mx∗(t1)

Next goal: linearity p∗(t) = −2P (t)x∗(t) to be verified for all t rather
than just for t1 where actually P (t1) = M .



Hamiltonian matrixH(t)
Canonical state-costate equations(
ẋ∗

ṗ∗

)
=
(
A(t) 1

2B(t)R−1(t)BT (t)
2Q(t) −AT (t)

)(
x∗

p∗

)
=: H(t)

(
x∗

p∗

)

Hence

(
x∗(t)
p∗(t)

)
= Φ(t, t1)

(
x∗(t1)
p∗(t1)

)
=

=
(

Φ11(t, t1) Φ12(t, t1)
Φ21(t, t1) Φ22(t, t1)

)(
x∗(t1)
p∗(t1)

)
(3)

where the inverse Φ(t, t1) = Φ−1(t1, t) of the fundamental matrix
Φ(t1, t) propagates the solution backward

Substituting the costate boundary condition p∗(t1) = −2Mx∗(t1)
into (3) yields

x∗(t) =
(
Φ11(t, t1)− 2Φ12(t, t1)M

)
x∗(t1)

p∗(t) =
(
Φ21(t, t1)− 2Φ22(t, t1)M

)
x∗(t1)



State feedback

Provided that ∃
(
Φ11(t, t1)− 2Φ12(t, t1)M

)−1
∀t

it follows

p∗(t) =
(
Φ21(t, t1)−2Φ22(t, t1)M

)(
Φ11(t, t1)−2Φ12(t, t1)M

)−1
x∗(t)

thus concluding that

P (t) := −1
2
(
Φ21(t, t1)−2Φ22(t, t1)M

)(
Φ11(t, t1)−2Φ12(t, t1)M

)−1

Summarizing, the closed-loop optimal control is obtained

u∗(t) = −R−1(t)BT (t)P (t)x∗(t)



Riccati differential equation

Differentiating
p∗(t) = −2P (t)x∗(t) (4)

yields
ṗ∗(t) = −2Ṗ (t)x∗(t)− 2P (t)ẋ∗(t).

Let us now use the canonical equations(
ẋ∗

ṗ∗

)
=
(
A(t) 1

2B(t)R−1(t)BT (t)
2Q(t) −AT (t)

)(
x∗

p∗

)

to arrive at

2Q(t)x∗(t)−AT (t)p∗(t) =
−2Ṗ (t)x∗(t)− 2P (t)A(t)x∗(t)− P (t)B(t)R−1(t)BT (t)p∗(t)

Applying (4) it follows that⇒



RDE derivation (continued)

Q(t)x∗(t) +AT (t)P (t)x∗(t) =
−Ṗ (t)x∗(t)− 2P (t)A(t)x∗(t) + P (t)R−1(t)BT (t)BT (t)P (t)x∗(t)

Since x0 is arbitrary then the state x∗(t) is arbitrary as well as far
as the state transition matrix is nonsingular.

⇓

The RDE must be satisfied for P (t) subject to P (t1) = M :

Ṗ (t) = P (t)B(t)R−1(t)BT (t)P (t)− P (t)A(t)−AT (t)P (t)−Q(t).

Maximum principle resulted in a unique candidate for an optimal
control u∗(t) = −R−1(t)BT (t)P (t)x∗(t)

Other tools should be involved for proving the existence of P (t)
for all t as well as for proving the optimality of the control thus

derived



Value function and global optimality

LQR-specialized HJB equation

−Vt(t, x) = inf
u∈Rm

{
xTQ(t)x+uTR(t)u+

〈
Vx(t, x), A(t)x+B(t)u

〉}
Boundary condition V (t1, x)) = xTMx = xTP (t1)x

R(t) > 0⇒ the minimizing control u = −1
2R
−1(t)BT (t)Vx(t, x)

LQR-specialized HJB equation is thus simplified to

−Vt(t, x) = xTQ(t)x+
(
Vx(t, x)

)T
A(t)x

−1
4
(
Vx(t, x)

)T
B(t)R−1(t)BT (t)Vx(t, x).

Just in case if u∗(t) = −R−1(t)BT (t)P (t)x∗(t) is the minimizing
control, then

1
2Vx(t, x) = P (t)x ⇒ V (t, x) = xTP (t)x.

The above quadratic V does satisfy the HJB equation provided
that P (t) is symmetric (your homework, Exercise 6.2).



Global existence of RDE solutions

Riccati differential equation

Ṗ (t) = P (t)B(t)R−1(t)BT (t)P (t)−Q(t)− P (t)A(t)−AT (t)P (t)

Subject to P (t1) = M, a local solution exists on some (t̄, t1).

1. To the contrary of the global existence, suppose that t̄ 6= t0 and
some entries of P (t) escape to infinity as t ↓ t̄ ;

2. P (t) is known from Exercise 6.2 (homework) to be symmetric
and positive semidefinite ⇒ all principal minors must be
nonnegative;

3. if an off-diagonal entry Pij(t) becomes unbounded near t̄, while
all diagonal entries stay bounded, then a ceratin 2× 2 principal
minor must be negative near t̄;

4. thus, only diagonal entries, say Pii(t), can be unbounded ⇒
the optimal cost-to-go eTi Pii(t)ei from ei = (0, . . . , 1, . . . , 0)T
escapes to infinity as t ↓ t̄;

5. this contradicts to the cost optimality because, e.g., u ≡ 0 on
[t̄, t1] would result in a lower finite cost.



Example

ẋ = u, J(u) =
∫ t1

t0
[x2(t) + u2(t)]dt→ min

⇓

RDE Ṗ = P 2 − 1, P (t1) = 0

⇓

Optimal control u = − tanh(t1 − t)x

If R = −1, i.e., J(u) =
∫ t1
t0

[x2(t)− u2(t)]dt, the RDE Ṗ = −P 2 − 1
has no global solutions

⇓

Assumption R > 0 is thus important.



Infinite-horizon autonomous LQR

Matrices A,B,Q,R are constant and the terminal cost M = 0.

RDE Ṗ = PBR−1BTP −Q− PA−ATP, P (t1) = 0

Solution of the above RDE is relabeled as P (t, t1)

Optimal control u∗t1(t) = −R−1BTP (t, t1)x

Value function V t1(t, x) = xTP (t, t1)x

Finite-horizon optimal cost V t1(t0, x0) = xT0 P (t0, t1)x0

Clearly, the finite-horizon optimal cost is monotonically nondecreasing
in t1.

Moreover, it remains bounded as t1 →∞ provided that A and B are
controllable. Indeed, it is upperbounded by the cost, matching to u(t),
steering the state to the origin by a time instant t̂ and which is nullified

after t̂.



Properties of the limit

Thus, ∃ limt1→∞ x
TP (t, t1)x. Moreover, ∃ limt1→∞ P (t, t1).

Indeed, ∃ limt1→∞ e
T
i P (t, t1)ei = limt1→∞ Pii(t, t1) and

∃ lim
t1→∞

(ei + ej)TP (t, t1)(ei + ej) = lim
t1→∞

(Pii + 2Pij + Pjj)

Actually, P (t, t1) = P (t1 − t) by virtue of the time-invariance of
the RDE and hence there exists a steady state

lim
t1→∞

P (t, t1) = P ≥ 0 ∀t

Passing to the limit as t1 →∞ on both sides of the RDE,
algebraic Riccati equation (ARE) is obtained for the stedy state P :

PA+ATP +Q− PBR−1BTP = 0 (5)

This is similar to passing from the general HJB equation to its
infinite-horizon counterpart.

Our hope that there exists a unique solution P = P T ≥ 0 of (5).



Infinite-horizon problem and its solution

J(u) =
∫ ∞
t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt→ min

Is V (x0) = xT0 Px0 optimal cost?
Is u∗(t) = −R−1BTPx optimal control?

Indeed,
d

dt

[
(x∗)T (t)Px∗(t)

]
= (x∗)T (t)

[
P (A−BR−1BTP ) + (AT

−PBR−1BT )P
]
x∗(t) = (x∗)T (t)

[
PA+ATP − 2PBR−1BTP

]
x∗(t)

= −(x∗)T (t)
[
Q+ PBR−1BTP

]
x∗(t)

It follows
∫ T

t0

[
(x∗)T (t)Qx∗(t) + (u∗)T (t)Ru∗(t)

]
dt

=
∫ T

t0
(x∗)T (t)

[
Q+ PBR−1P

]
x∗(t)dt

= −
∫ T

t0

d

dt

[
(x∗)T (t)Px∗(t)

]
dt = xT0 Px0 − (x∗)T (T )Px∗(T ) ≤ xT0 Px0



Infinite-horizon problem and its solution (cont’d)

Taking the limit as T →∞, it is thus concluded

J(u∗) ≤ xT0 Px0 (6)

On the other hand, xT0 P (t0, t1)x0 is the finite-horizon optimal cost
and ∀x, subject to the same initial condition, one has

xT0 P (t0, t1)x0 ≤
∫ t1

t0

[
xT (t)Qx(t) + (u)T (t)Ru(t)

]
dt

≤
∫ ∞
t0

(
[
xT (t)Qx(t) + (u)T (t)Ru(t)

]
dt = J(u)

Passing to the limit as t1 →∞, it follows

xT0 Px0 ≤ J(u)

By virtue of (6), the optimality of u∗ is concluded:

J(u∗) = xT0 Px0 ≤ J(u) ∀u



Closed-loop stability

Example

ẋ = x+ u, J =
∫ ∞

0
u2dt→∞

Optimal control u∗ ≡ 0⇒ the closed-loop system ẋ = x is unstable.

Let system ẋ = Ax+Bu, be observable with the output y = Cx
such that Q = CTC. Its optimal cost functional

J(u∗) =
∫ ∞
t0

[
(x∗)T (t)CTCx∗(t) + (u∗)T (t)Ru∗(t)

]
dt <∞.

⇓

y∗(t) = Cx∗(t)→ 0, u∗(t)→ 0 as t→∞

⇓

x∗(t)→ 0 as t→∞ ⇒ Closed-loop exponential stability



Infinite-horizon LQR: complete result

System dynamics ẋ = Ax+Bu

Cost functional

J(u) =
∫ ∞
t0

[
xT (t)CTCx(t) + uT (t)Ru(t)

]
dt

where (A,B) is controllable, (A,C) is observable, and
R = RT > 0.

Theorem
1. ∃P = limt→∞ P (t0, t1) of the solution of the RDE with the

terminal condition P (t1) = 0; this limit is a unique symmetric,
positive definite solution of the corresponding ARE;

2. The optimal cost V (x0) = xT0 Px0;
3. The unique optimal control u∗(t) = −R−1BTPx∗(t);

4. The closed-loop system ẋ∗ = (A−BR−1BTP )x∗ is
exponentially stable.



Proof of the complete result

All has been proved except the solution uniqueness and positive
definiteness of P .

Proving P > 0

Suppose that xT0 Px0 = 0. Then for this initial condition x0, the
optimal cost∫ ∞

t0

[
(x∗)T (t)CTCx∗(t) + (u∗)T (t)Ru∗(t)

]
dt = 0

⇓

Cx∗ ≡ 0, u∗ ≡ 0 (since R > 0)

By observability, it follows that x0 = 0, and hence⇒ P > 0.



Proof of the complete result (cont’d)

P is a unique positive (semi)definite solution of the ARE.

Suppose that ∃P̄ > 0 (or even P̄ ≥ 0). Consider the new cost
functional

J̄ t1(u) :=
∫ t1

t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt+ xT (t1)P̄ x(t1)

and its infinite-horizon counterpart:

J̄∞(u) := lim
t1→∞

{∫ t1

t0

[
xT (t)Qx(t)+uT (t)Ru(t)

]
dt+xT (t1)P̄ x(t1)

}
.

Then

J̄∞(u∗) =
∫ ∞
t0

[
(x∗)T (t)Qx∗(t) + (u∗)T (t)Ru∗(t)

]
dt
}

= xT0 Px0

is the optimal cost with respect to J̄∞ because

J̄∞(u) ≥
∫ ∞
t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt
}
≥ xT0 Px0.



Proof of the uniqueness of P (cont’d)

On the other hand, the optimal cost is given by

J̄ t1(u∗) = xT0 P (t0; P̄, t1)x0

where P (t0; P̄, t1) denotes the solution of the corresponding RDE
subject to P (t1) = P̄ .

⇓

P (t0; P̄, t1) = P̄

because P̄ is an equilibrium of the RDE as it satisfies ARE by
assumption

⇓

P = P̄ and the P -uniqueness is thus verified



Proof of the complete result (cont’d)

It remains to establish that the optimal control is unique.

By maximum principle, the optimal control satisfies

u∗(t) = arg max
u∈U

{
L(t, x∗, u) +

〈
Vx(t, x∗(t)), f(t, x∗(t), u)

〉}
to presently be specified to

u∗(t) = arg max
u∈U

{
(x∗)T t)Qx∗(t) + uTBu

+2(x∗)T (t)PAx∗(t) + 2(x∗)T (t)PBu
}

The latter uniquely identifies the optimal feedback


