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Optimal Control 2018

L1:
L2:
L3:
L4:
L5:
L6:
L7:

Functional minimization, Calculus of variations (CV) problem
Constrained CV problems, From CV to optimal control
Maximum principle, Existence of optimal control

Maximum principle (proof)

Dynamic programming, Hamilton-Jacobi-Bellman equation
Linear quadratic regulator

Numerical methods for optimal control problems

Exercise sessions (20%):

Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):

Study and present your own optimal control problem.
Written take-home exam (60%).



Summary of L4: Basic problem formulation

Find a control u € U C R™ that minimizes the cost

ty
Jw) = [ LG@(t), u(e) dt + K (o)
tg S————
time independent
where
o &= f(x(t),u(t)), z(to) = z0, z € R", K(zy) =0, (t5,z¢) €S
N—————’
time independent

e f, fa, L, L, continuous

« Basic fixed-endpoint problem (BFEP) (¢ free, s fixed)
S = [tg,00) x {z1}
« Basic variable-endpoint problem (BVEP) (¢, free, z; € S7)
S = [tg,00) x S1
S1={zeR": hi(z) =hao(z) =" hp_r(z) =0}
h; € C{R" - R),i=1,...,n—k.



Summary of L4: Maximum principle

Define the Hamiltonian
H(z,u,p,po) = (p, f(x,u)) + poL(z,u).

Assume that the basic problem has a solution (u*(¢), *(t)). Then
there exist a function p* : [tg,t¢] — R™ and a constant pj < 0
satisfying (pj, p*(t)) # (0,0) Vt € [to,ts] and

1) &% = Hp(t, 2", u*,p*), p* = —Hy(t, 2", u", p").

2) H(z*(t),u” (t),p" (), po) = H (" (t), u(t), p*(t), po)

Vt € [to, tf], Vu € U.
3) H(z*(t),u"(t),p"(t),p5) =0 Vt € [to, ty]
4) (p*(t),d) =0 Vd € Tpu(;,)S1 (Only for BVEP)

Tyt f)Sl : tangent space to S1. Transversality condition.



Summary of L4: 6th Step of the Proof

Suppose Lemma is false. Then 33 € [ below y*(¢*) such that
i € C¢« together with a ball B. C Cy+ = For a suitable 8 > 0, one
has

J=y" (") +ebu
Since B, C Cy, its points are of the form y*(t*) + cv where ev are
first-order perturbations, arising from the earlier control perturbations.

e Actual terminal points
y*(t*) + ev + o(e) of these
perturbed trajectories form the set
B. which is o(¢) away from B,

o Lete — 0,then § := y*((t*) + eBp
approaches y*(t*).

e Since the center of B is on [i below
y*(t*) then for sufficiently small ¢,
set B. intersects [i below y*(t*),
too that contradicts the optimality.

Fioure 4.10: Provine Lemma 4.1



Summary of L4: Exercise 4.5

Prove that along with the ball B., its warped version B. and n
must have a honempty intersection for sufficiently small £ > 0.

The warping map F(y) of the ball B, into the warping ball B, is
continuous because the terminal points depend continuously on the
perturbation parameters, parameterizing the ball B, (such as
w,a,b,e).

Given an arbitrary v € (0, 1), the o(e) respects |o(e)| < ae for e
small enough.

For an arbitrary z € B(;_,). we want to find a point y € B. such that
F(y) = z or what is equivalent, y = y — F'(y) + z. Actually, the map
G(y) :=y — F(y) + z has a fixed point because by virtue of

y— F(y) = o(e) < ae and |z| < (1 — ), it maps the ball B, to
itself.
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Motivation: the discrete problem

Principle of optimality

HJB equation

Infinite-horizon problem

Sufficient condition for optimality

HJB Equation vs. Maximum Principle
Nondifferentiable value function: example
Viscosity solutions of HJB Equation



Motivating discrete problem

S1:
Discrete system: zj.1 = f(xg,ur), k=0,1,...,T—1
z € X (finite set of N elements)

u € U (finite set of M elements)

xT is free

A
§ AN $ S $
N/ -
zo A%:é $ 3 $
L .
$ *$
> ¢
0 1 2 -1 T 0 1 r-1 T
Figure 5.1: Discrete case: going forward Figure 5.2: Discrete case: going backward

O(M™T) operations O(NMT) operations



Principle of optimality

State dynamics
T = f(t,x,u), z(to) = xo
Fixed-time free-end Bolza problem

t1

J(to, xo,u) = t L(t,z(t),u(t))dt + K(z(t1)) — min

Family of minimization problems, associated with the cost functional

t1

J(t,x,u) = t L(s,z(s),u(s))ds + K(z(t1)), t € [to,t1), v € R"

Belman’s roadmap:
derive a dynamic relationship among these problem by solving all of
them!



Principle of optimality (continued)

Value function (optimal cost-to-go)

V(t,z):= inf J(t,z,u)

Uit
where uy, ;) is the control restriction to [t, #1].

Value function boundary condition for Bolza problem

V(t1,z) = K(z) VzeR"

For a general target set

S C [t(), o0) x R™ the
boundary condition is in the
form

OV V(t,z) = K(z) V(t,z) €S

Figure 5.3: Continuous time: principle of optimality



Principle of optimality (continued)

Vit,z)= inf { /t t+AtL(s,x(s),u(s))ds +V(t+ At,a(t + At) |

Ult,t4+At]

V(t,x)
Proof: Let us show (the reverse inequality is left for your homework)
V(t,z) > V(tx) (1)
By definition V (¢, x) := inf%,tﬂ J(t,x,u), Ve > 0 Jue on [t,t4] :
V(t,x) +e> J(t,x,ue).

Since € is arbitrary, inequality (1) is then verified by virtue of

t+At
T(t, 2, u,) = / L(s, (s), we(s))ds + J(t + At we (£ + At u)
t

t+AL _
> / L(s, 2(s), ue(s))ds + V(t + At,zo(t + A8) > V(t,2)
t



Infinitesimal version of the optimality principle

Since
x(t+ At) =x + f(t,z,u(t)) At + o(At)

provided that z(t) = x, then
t+At
/t L(s, 2(s), u(s))ds = L(t, z, u(t)) At + o(Al)

whereas assuming V to be of class C'! results in
V(t+ At,z(t + At)) = V(t, z)
+Vi(t, o) At+ < Vi (t, z), f(t, x,u(t))At) > +o(At).
Plugging the above relations in the optimality principle yields
V(t,z) = inf {L(t,z,u(t)At+ V(t,x)+
Ult,t+At]

Vi(t, ) At+ < Vi (t,x), f(t,x,u(t))At > +o(At)},

thereby arriving at:



HJB equation

inf {L(t,z,u(t))At + Vi(t,x) At +

UL, t4At)

< Vi(t,x), f(t,z,u(t))At > +o(At)} =

Being divided by At and viewed in the limit as At — 0, the latter takes
the form of the Hamilton-Jacobi-Belman equation

“Vilt,2) = inf {L(t 20+ < Vat,2), f(t2,u) >}
ue
to hold true for all ¢ € [tg,¢1) and all z € R™. Equivalently,

Vi(t,z) = sup{—L(t,z,u)— < V(t,x), f(t,x,u) >}
uelU



HJB equation (continued)

Provided that a global optimal control ©.* does exists the
infimum/supremum in the HJB equation is replaced by a
minimum/maximum and this minimum/maximum is achieved with
u = u*:

Vilt, @) = mas(~L(t, 0" u)— < Valta"), (60" u) >} =
—L(t,z",u*)— < Vy(t, "), f(t,x", u") >

In terms of the Hamiltonian
H(t,x,u,p) :=<p, f(t,z,u) > —L(t, z,u),
the latter equality is reproduced in the maximum principle form

H(t,z*(t),u"(t), —Vy(t,x*(t))) = max H(t,x*(t),u, —Vy(t,x*(t)))

uelU

where the costate vector p = —V,.(¢, z*(t)) is explicitly given as the
current optimal state function.



Example 1

The standard (scalar) integrator © = u is to be minimized for a
fixed-time ¢ ¢, free-endpoint (¢ ) and the cost L(z, u) = z* + u.

The corresponding HJB equation
—Vi(t,z) = ig{g{x‘l +ut + Vi (t, x)u}, V(tp,x) =0Ve €R
u

is simplified (by finding the infimum) to

4
3

—Vi(t,z) = z* — 3(1Vm(t,x))

1 , Vitf,2) =0Vz e R (2)

Once the HJB equation (2) is solved (what is however hardly possible),
the optimal control

becomes feasible.



Example 2

The minimal time parking problem for

=wu, x(ty)=d2(ty) =0, ue[-1,1], ty— min

The corresponding HJB equation

Viltw) = int (1 Vay (6 2)mz + Vet 0)ul, V(1,0) = 0

where the infimum is achieved at
u= —sgn(V},;2 (t,a:))
so that HJB equation is represented as
—Vi(t,z) =14 Vo, (t, )z — |V (E, )|, V(E,0) =0Vt (3)

(Further analysis of the HJB equation (3) is among your homework
exercises.)



Infinite-horizon problem

The vector field f = f(x,u) and the cost fuctional L = L(x, u)
are time-invariant, no terminal cost K = 0, the final state x(¢;) is
free,and t; = oo

oo
The cost functional becomes  J(u) = L(z(t),u(t))dt — min
to

Just in (autonomous and infinite-horizon) case, the cost functional
does not depend on the initial time instant. It follows the value function
V = V(x) depends on z only. Thus, the HJB equation reduces to

0= inf {L(z,u)+ < Va(z), f(z,u) >} (4)

Particularly, for the scalar state = € R, the HJB equation (4) is ODE,
and for Example 1, it yields

4

:U‘L3(%Vgc(t,x))§ =0 = Vy(z) = (;)24:63 & ut(t) = f(l)%aj*(t)



Sufficient Conditions fro Optimality

All we prove so far is the necessary conditions for optimality

Sufficient condition: Suppose V(t,x) € Cl:tg,t1] x R* = R
satisfies the terminal condition V'(¢1,x) = K (z) and the HJB equation

—Vi(t,z) = iglf]{L(t,a:,u)—i— < Vilt, ), f(t,z,u) >}.

Suppose @ : [to,t1] — U and the corresponding trajectory
Z : [to, t1] — R™, initialized with z(t9) = x( satisfies

(which is representable as the Hamiltonian maximization condition)

Then V (¢, x) is the optimal cost and 4(t) is an optimal control.



Proof of the Sufficiency

Specified with (4 (t), Z(t)), the HJB equation becomes

Vit 8(0) = Lt 2(8), () + < Valt, 2(8)), £(t, (), (t)) > .
It follows 0 = L(¢t, z(t), a(t)) + dif/( Z(t)), thereby yielding

t1

0= [ L(t,2(t),a(t))dt + V(t1, 2(t1)) =V (to, &(t0))-
to S——— N~
K(&(t1)) 20
Thus, V(to, o) = [ L(t, &(t), a(t))dt + K (&(t1)) = J (o, zo, ).

On the other hand, maklng the same manipulations for another
x(t) : z(tg) = o, corresponding to u(t), yields:

V(to, o) g/tl L(t, 2(t), u())dt + K(2(t1)) = J(to, z0, u).

to

This completes the proof: J(tg, g, 0) < J(to, zo, u).



Historical remarks

The HJB PDE has origins in the work of Hamilton and Jacobi late
1830’s. At that time equation served as a necessary optimality
condition in the calculus of variations.

Its using as a sufficient optimality condition was proposed by
Caratheodori in 1920’s

The principle of optimality seems an almost trivial observation dated
back to the HJB PDE the work of Bernoulli’s solution of the
brachistochrone problem in 1697.



Historical remarks (continued)

In early 1950’s (slightly before Bellman), the optimality principle was
formalized by Isaacs for differential games in terms of the fundamental
game theory PDE, bearing his name (also known as
Hamilton-Jacobi-Isaacs PDE.

Not clear if Bellman realized connection of his work to Hamilton-Jacobi
equation of calculus of variations. This connection was clearly made
by Kalman in early 1960’s who combined the ideas of Bellman and
Caratheodori for derivation of suffcient conditions and who was the
first to call the HJB equation.

Pontryagin’s maximum principle was being developed independently
and in parallel to the work of Bellman and Kalman on dynamic
programming.



HJB Equation vs. Maximum Principle (autonomous case)

Canonical state and costate equations &* = Hy|«, p* = —Hz|« (5)
Maximum principle u*(t) = arg max H((z"(t ) p*(t)) (6)
ue

HJB equation yields u*(t) = arg max H((z*(t),u, = Vy(t,x (t)))
u

Is the maximum principle (6) deducible from HJB-based relation (7)?

It happens if p*(t) = —V,(t, x*(t)) where the value function V' reads
—Vi(t, 2" (1)) = L(t, 2" (), u"(t))+ < Va(t, 2" (1)), f (£, 27 (1), u"(£)) > .

Since V(t1,z) = K(x) it does match the boundary condition
p*(t1) = —Kz(z*(t1)) of the maximum principle.

Thus, it remains to establish that p*(t) = —V, (¢, 2*(t)) satisfies the
costate equation (5) (homework).



Example: nondifferentiable value function

So, the maximum principle is actually deducible from the Bellman’a
dynamic programming provided that V (¢, z) is at least of class C'*.

Is in general the value function smooth?

Fixed-time free-endpoint scalar optimal control problem

. _ .
Tt =uzu, J(u)=ax( 1)Hu§171111’1]

V(t.z)

ety if x>0
V(t,z) = ety if <0
0 if =0
Figure 5.4: Value function nondifferentiable at 2 = 0

HJB equation
Vi = igf{un} = —|Vez|, V(ti,x)==

does not admit a C'* solution (what is typical for constrained control).



Introduction to HUJB nonsmooh solutions

One-sided differentials Let v(z) € CY : R” — R. Vector ¢ € Risa
super-differential D v(x) of v at x iff Vy near z it reads

v(y) <v(@)+ <& (y —2) > +o(ly — vl).
Similarly, § € R is a sub-differential D~ v(x) iff Yy near x it reads
v(y) Z v(z)+ <& (y—=z) > —o(ly —vl)

v(y) v(y)
A

S\ope &

y .
x

Y

\4

Figure 5.5: (a) super-differential, (b) sub-differential



Example: sub(super)-differentials

0 if x>0
v(x)=19 vz if 0<z<1
‘ v 1 if z>1

Figure 5.6: The function in Example 5.3

The one-sided differentials



Test functions

Super(sub)-differential criterion

A vector ¢ € DY w(x) if and only if 3 a test function ¢ € C' : R® — R
suchthat Vo (z) = &, ¢(z) = v(x), and ¢(y) > v(y) Yy near z, i.e,
¢ — v has alocal minimum at z.

v(y)
A

»

® 5\096 &

. > Y

x

Figure 5.7: Characterization of a super-differential via a test function

Similarly, ¢ € D~v(z) if and only if 3 a test function ¢ € C! : R® — R
such that Vo (z) = £ and ¢ — v has a local maximum at x.



Relations with classical differentials

If v is differentiable at =, then

Dto(x) = D™ v(z) = {Vu(z)}
If DY v(z) and D~ v(x) are both nonempty, then v s differentiable at =
and the above relation holds.

Non-emptness and denseness The sets {z : D"v(z) # (0} and
{z : D~ v(x) # 0} are both non-empty, and dense in the domain of v.

v(y)

Ty @

Figure 5.8: Proving denseness



Viscosity solutions of PDEs

F(z,v(x),Vo(z)) =0 (8)

A viscosity subsolution of (9) with a continuous left-hand side is a
continuous function v : R™” — R such that

F(z,0(2),6) <0 V¢ € D¥(v(a)), ¥a
This is equivalently to say that VY one has F(z,v(z),£) < 0V Cl-test
functions ¢(x) such that ¢ — v has a local minimum at x.

A viscosity subsolution of (9) is a continuous function v : R — R
such that
F(z,v(2),6) >0 V¢ € D™ (v(2)), Vo

This is equivalently to say that VY one has F(z,v(z),£) > 0V C'-test
functions ¢(x) such that ¢ — v has a local maximum at .

Finally, v is a viscosity solution if it is both a viscosity supersolution
and a viscosity subsolution



Example: viscosity solution

Consider the scalar PDE
1—1|Vou(z)|=0

with F'(z,v,§) = 1 — |£|. By inspection, the functions v(x) = x and
v(x) = —x are both classical solutions of the above PDE (as they
satisfy the PDE outside the origin i.e., almost everywhere).

The function v(x) = |z| is a viscosity solution. Indeed,for checking the
PDE at v = 0, note first that D v(0) = () hence F(x,v(z),£) < 0is
satisfied trivially. Second, D~ v(0) = [—~1.1] and 1 — |¢| > 0 holds
Ve [-1,1].

Lack of sign symmetry of viscosity solution
By inspection, v(z) = |z| is not a viscosity solution of |Vu(z)|—1 =0

About terminology

F(z,ve(z), Vu(z)) = eAvc(x) viscous fluid equation  (9)



HJB equation and the value function

—Vi(t,x) — iIel(f]{L(t’x’u)+ < Vu(t,x), f(t,x,u) >} =0. (10)

Main result for a fixed-time free-end point optimal control

The value function V' is a unique viscosity solution of the HJB equation
(10) with the boundary condition V' (t1,z) = K(z), Vx € R™.

Why V' a viscosity solution of (10) with the correct sign convention

Given an arbitrary (¢, zg), one needs to make sure that V C'-test
function ¢(t, z) such that ¢ — V attains a local minimum at (to, o),
the inequality holds (proving the claim for viscosity subsolution is left

for yourself):

o (to, o) — gIEIIfJ{L(to,HCo,U)—i- < ¢z (to, xo), f(to, zo,u) >} < 0.



Proof of the value function to be a viscosity solution

Suppose on the contrary, 3 C''-function ¢ and a control value ug € U
such that

qb(t(],il?o) = V(to,f)?o), gb(tvl‘) > V(ta$) v (tvx) near x (11)

¢¢(to, zo) — L(to, xo, uo) — <¢x(t07$0)7 f(t0790oyuo)> >0 (12

Consider the state trajectory, initialized with z(tp) = ¢ and resulting
from applying u = ug on [to, to + At]. It follows

V(to + At,z(to + At) — V(to, x0) < d(to + At, x(to + At) — é(to, zo)
to+AL

to+At
_ Soltatoni = [ )

to

to+At
T < galt, (), F(t2(t),u0) > )t < —/ L(t, 2(t), ug)dt

to



Proof (continued)

Thus
to+At
V(to, z0) > / L(t, 2(t), uo)dt + V(o + A, x(to + At)) (13)
to
that contradicts to the principle of optimality:
to+AL
V(to, o) < / L(t (t), uo)dt + V(to + AL, a(to + At)).
to

Relation (13) implies that the optimal cost-to-go is higher than the cost
of applying the constant control u = ug on [to, to + At] followed by an
optimal control on the remaining interval that cannot be true.



