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Optimal Control 2018

L1: Functional minimization, Calculus of variations (CV) problem

L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle, Existence of optimal control

L4: Maximum principle (proof)

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation

L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):
Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):
Study and present your own optimal control problem.
Written take-home exam (60%).



Summary of L4: Basic problem formulation

Find a control u ∈ U ⊂ Rm that minimizes the cost

J(u) =
∫ tf

t0
L(x(t), u(t))︸ ︷︷ ︸
time independent

dt+K(xf )

where

• ẋ = f(x(t), u(t))︸ ︷︷ ︸
time independent

, x(t0) = x0, x ∈ Rn,K(xf ) = 0, (tf , xf ) ∈ S

• f, fx, L, Lx continuous

• Basic fixed-endpoint problem (BFEP) (tf free, xf fixed)

S = [t0,∞)× {x1}
• Basic variable-endpoint problem (BVEP) (tf free, xf ∈ S1)

S = [t0,∞)× S1

S1 = {x ∈ Rn : h1(x) = h2(x) = · · ·hn−k(x) = 0}
hi ∈ C1(Rn → R), i = 1, . . . , n− k.



Summary of L4: Maximum principle

Define the Hamiltonian

H(x, u, p, p0) = 〈p, f(x, u)〉+ p0L(x, u).

Assume that the basic problem has a solution (u∗(t), x∗(t)). Then
there exist a function p∗ : [t0, tf ]→ Rn and a constant p∗0 ≤ 0
satisfying (p∗0, p∗(t)) 6= (0, 0) ∀t ∈ [t0, tf ] and

1) ẋ∗ = Hp(t, x∗, u∗, p∗), ṗ∗ = −Hx(t, x∗, u∗, p∗).

2) H(x∗(t), u∗(t), p∗(t), p∗0) ≥ H(x∗(t), u(t), p∗(t), p∗0)
∀t ∈ [t0, tf ], ∀u ∈ U.

3) H(x∗(t), u∗(t), p∗(t), p∗0) = 0 ∀t ∈ [t0, tf ]

4) 〈p∗(tf ), d〉 = 0 ∀d ∈ Tx∗(tf )S1 (Only for BVEP)

Tx∗(tf )S1 : tangent space to S1. Transversality condition.



Summary of L4: 6th Step of the Proof

Suppose Lemma is false. Then ∃ŷ ∈ µ̄ below y∗(t∗) such that
ŷ ∈ Ct∗ together with a ball Bε ⊂ Ct∗ ⇒ For a suitable β > 0, one
has

ŷ = y∗(t∗) + εβµ

Since Bε ⊂ Ct∗ , its points are of the form y∗(t∗) + εν where εν are
first-order perturbations, arising from the earlier control perturbations.
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y∗(t∗)+εν where the vectors εν are first-order perturbations of the terminal
point arising from control perturbations constructed earlier. We know that
the actual terminal points of trajectories corresponding to these control
perturbations are given by

y∗(t∗) + εν + o(ε). (4.27)

We denote the set of these terminal points by B̃ε; we can think of it as a
“warped” version of Bε, since it is o(ε) away from Bε.

In the above discussion, ε > 0 was fixed; we now make it tend to 0. The
point y∗(t∗) + εβµ, which we relabel as ŷε to emphasize its dependence on
ε, will approach y∗(t∗) along the ray ~µ as ε → 0 (here β is the same fixed
positive number as in the original expression for ŷ). The ball Bε, which
now stands for the ball of radius ε around ŷε, will still belong to Ct∗ and
consist of the points y∗(t∗) + εν for each value of ε. Terminal points of
perturbed state trajectories (the perturbations being parameterized by ε)
will still generate a “warped ball” B̃ε consisting of points of the form (4.27).
Figure 4.10 should help visualize this construction.
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Figure 4.10: Proving Lemma 4.1

Since the center of Bε is on ~µ below y∗(t∗), the radius of Bε is ε, and
the “warping” is of order o(ε), for sufficiently small ε the set B̃ε will still
intersect the ray ~µ below y∗(t∗). But this means that there exists a perturbed
trajectory x which hits the desired terminal point x1 with a lower value of
the cost. The resulting contradiction proves the lemma.

The above claim about a nonempty intersection of B̃ε and ~µ seems intu-
itively obvious. The original proof of the maximum principle in [PBGM62]
states that this fact is obvious, but then adds a lengthy footnote explaining

• Actual terminal points
y∗(t∗) + εν + o(ε) of these
perturbed trajectories form the set
B̃ε which is o(ε) away from Bε

• Let ε→ 0, then ŷ := y∗((t∗) + εβµ
approaches y∗(t∗).

• Since the center of Bε is on µ̂ below
y∗(t∗) then for sufficiently small ε,
set B̃ε intersects µ̄ below y∗(t∗),
too that contradicts the optimality.



Summary of L4: Exercise 4.5

Prove that along with the ball Bε, its warped version B̃ε and µ̃
must have a nonempty intersection for sufficiently small ε > 0.

The warping map F (y) of the ball Bε into the warping ball B̃ε is
continuous because the terminal points depend continuously on the
perturbation parameters, parameterizing the ball Bε (such as
ω, a, b, ε).

Given an arbitrary α ∈ (0, 1), the o(ε) respects |o(ε)| < αε for ε
small enough.

For an arbitrary z ∈ B(1−α)ε we want to find a point y ∈ Bε such that
F (y) = z or what is equivalent, y = y − F (y) + z. Actually, the map
G(y) := y − F (y) + z has a fixed point because by virtue of
y − F (y) = o(ε) < αε and |z| < (1− α)ε, it maps the ball Bε to
itself.



Outline
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2. Principle of optimality

3. HJB equation

4. Infinite-horizon problem

5. Sufficient condition for optimality
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7. Nondifferentiable value function: example

8. Viscosity solutions of HJB Equation



Motivating discrete problem

S1:

Discrete system: xk+1 = f(xk, uk), k = 0, 1, . . . , T − 1

x ∈ X (finite set of N elements)

u ∈ U (finite set of M elements)

xT is free
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The most naive approach to this problem is as follows: starting from
x0, enumerate all possible trajectories going forward up to time T , calculate
the cost for each one, then compare them and select the optimal one. Fig-
ure 5.1 provides a visualization of this scenario. It is easy to estimate the
computational effort required to implement such a solution: there are M T

possible trajectories and we need T additions to compute the cost for each
one, which results in roughly O(MTT ) algebraic operations.

...$
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$

$

$

$
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Figure 5.1: Discrete case: going forward

We now examine an alternative approach, which might initially appear
counterintuitive: let us go backward in time. At k = T , terminal costs
are known for each xk. At k = T − 1, for each xk we find to which xk+1

we should jump so as to have the smallest cost (the one-step running cost
plus the terminal cost). Write this optimal “cost-to-go” next to each xk

and mark the selected path (see Figure 5.2). In case of more than one path
giving the same cost, choose one of them at random. Repeat these steps for
k = T − 2, . . . , 0, working with the costs-to-go computed previously in place
of the terminal costs.
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Figure 5.2: Discrete case: going backward

O(MTT ) operations
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Principle of optimality

State dynamics
ẋ = f(t, x, u), x(t0) = x0

Fixed-time free-end Bolza problem

J(t0, x0, u) =
∫ t1

t0
L(t, x(t), u(t))dt+K(x(t1))→ min

Family of minimization problems, associated with the cost functional

J(t, x, u) =
∫ t1

t
L(s, x(s), u(s))ds+K(x(t1)), t ∈ [t0, t1), x ∈ Rn

Belman’s roadmap:
derive a dynamic relationship among these problem by solving all of

them!



Principle of optimality (continued)

Value function (optimal cost-to-go)

V (t, x) := inf
u[t,t1]

J(t, x, u)

where u[t,t1] is the control restriction to [t, t1].

Value function boundary condition for Bolza problem

V (t1, x) = K(x) ∀x ∈ Rn

160
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CHAPTER 5

where x(·) on the right-hand side is the state trajectory corresponding to the
control u[t,t+∆t] and satisfying x(t) = x. The intuition behind this state-
ment is that to search for an optimal control, we can search over a small
time interval for a control that minimizes the cost over this interval plus
the subsequent optimal cost-to-go. Thus the minimization problem on the
interval [t, t1] is split into two, one on [t, t+ ∆t] and the other on [t+ ∆t, t1];
see Figure 5.3.
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Figure 5.3: Continuous time: principle of optimality

The above principle of optimality may seem obvious. However, it is
important to justify it rigorously, especially since we are using an infimum
and not assuming existence of optimal controls. We give “one half” of the
proof by verifying that

V (t, x) ≥ V (t, x) (5.5)

where V (t, x) denotes the right-hand side of (5.4):

V (t, x) := inf
u[t,t+∆t]

{∫ t+∆t

t
L(s, x(s), u(s))ds+ V (t+ ∆t, x(t+ ∆t))

}
.

By (5.2) and the definition of infimum, for every ε > 0 there exists a control
uε on [t, t1] such that

V (t, x) + ε ≥ J(t, x, uε). (5.6)

Writing xε for the corresponding state trajectory, we have

J(t, x, uε) =

∫ t+∆t

t
L(s, xε(s), uε(s))ds+ J(t+ ∆t, xε(t+ ∆t), uε)

≥
∫ t+∆t

t
L(s, xε(s), uε(s))ds+ V (t+ ∆t, xε(t+ ∆t)) ≥ V (t, x)

where the two inequalities follow directly from the definitions of V and
V , respectively. Since (5.6) holds with an arbitrary ε > 0, the desired
inequality (5.5) is established.

For a general target set
S ⊂ [t0,∞)× Rn the
boundary condition is in the
form

V (t, x) = K(x) ∀(t, x) ∈ S



Principle of optimality (continued)

V (t, x) = inf
u[t,t+∆t]

{∫ t+∆t

t
L(s, x(s), u(s))ds+ V (t+ ∆t, x(t+ ∆t))

}
︸ ︷︷ ︸

V̄ (t, x)

Proof: Let us show (the reverse inequality is left for your homework)

V (t, x) ≥ V̄ (t, x) (1)

By definition V (t, x) := infu[t,t1] J(t, x, u), ∀ε > 0 ∃uε on [t, t1] :

V (t, x) + ε ≥ J(t, x, uε).

Since ε is arbitrary, inequality (1) is then verified by virtue of

J(t, x, uε) =
∫ t+∆t

t
L(s, xε(s), uε(s))ds+ J(t+ ∆t, xε(t+ ∆t, uε)

≥
∫ t+∆t

t
L(s, xε(s), uε(s))ds+ V (t+ ∆t, xε(t+ ∆t) ≥ V̄ (t, x)



Infinitesimal version of the optimality principle

Since
x(t+ ∆t) = x+ f(t, x, u(t))∆t+ o(∆t)

provided that x(t) = x, then∫ t+∆t

t
L(s, x(s), u(s))ds = L(t, x, u(t))∆t+ o(∆t)

whereas assuming V to be of class C1 results in

V (t+ ∆t, x(t+ ∆t)) = V (t, x)
+Vt(t, x)∆t+ < Vx(t, x), f(t, x, u(t))∆t) > +o(∆t).

Plugging the above relations in the optimality principle yields

V (t, x) = inf
u[t,t+∆t]

{L(t, x, u(t)∆t+ V (t, x) +

Vt(t, x)∆t+ < Vx(t, x), f(t, x, u(t))∆t > +o(∆t)},

thereby arriving at:



HJB equation

inf
u[t,t+∆t]

{L(t, x, u(t))∆t+ Vt(t, x)∆t+

< Vx(t, x), f(t, x, u(t))∆t > +o(∆t)} = 0.

Being divided by ∆t and viewed in the limit as ∆t→ 0, the latter takes
the form of the Hamilton-Jacobi-Belman equation

−Vt(t, x) = inf
u∈U
{L(t, x, u)+ < Vx(t, x), f(t, x, u) >}

to hold true for all t ∈ [t0, t1) and all x ∈ Rn. Equivalently,

Vt(t, x) = sup
u∈U
{−L(t, x, u)− < Vx(t, x), f(t, x, u) >}



HJB equation (continued)

Provided that a global optimal control u∗ does exists the
infimum/supremum in the HJB equation is replaced by a
minimum/maximum and this minimum/maximum is achieved with
u = u∗:

Vt(t, x) = max
u∈U
{−L(t, x∗, u)− < Vx(t, x∗), f(t, x∗, u) >} =

−L(t, x∗, u∗)− < Vx(t, x∗), f(t, x∗, u∗) >

In terms of the Hamiltonian

H(t, x, u, p) :=< p, f(t, x, u) > −L(t, x, u),

the latter equality is reproduced in the maximum principle form

H(t, x∗(t), u∗(t),−Vx(t, x∗(t))) = max
u∈U

H(t, x∗(t), u,−Vx(t, x∗(t)))

where the costate vector p = −Vx(t, x∗(t)) is explicitly given as the
current optimal state function.



Example 1

The standard (scalar) integrator ẋ = u is to be minimized for a
fixed-time tf , free-endpoint x(tf ) and the cost L(x, u) = x4 + u4.

The corresponding HJB equation

−Vt(t, x) = inf
u∈R
{x4 + u4 + Vx(t, x)u}, V (tf , x) = 0 ∀x ∈ R

is simplified (by finding the infimum) to

−Vt(t, x) = x4 − 3
(1
4Vx(t, x)

) 4
3 , V (tf , x) = 0 ∀x ∈ R (2)

Once the HJB equation (2) is solved (what is however hardly possible),
the optimal control

u∗(t) = −
(1

4Vx(t, x∗(t))
) 1

3

becomes feasible.



Example 2

The minimal time parking problem for

ẍ = u, x(tf ) = ẋ(tf ) = 0, u ∈ [−1, 1], tf → min

The corresponding HJB equation

−Vt(t, x) = inf
u∈[−1,1]

{1 + Vx1(t, x)x2 + Vx2(t, x)u}, V (t, 0) = 0 ∀t

where the infimum is achieved at

u = −sgn
(
Vx2(t, x)

)
so that HJB equation is represented as

−Vt(t, x) = 1 + Vx1(t, x)x1 − |Vx2(t, x)|, V (t, 0) = 0 ∀t (3)

(Further analysis of the HJB equation (3) is among your homework
exercises.)



Infinite-horizon problem

The vector field f = f(x, u) and the cost fuctional L = L(x, u)
are time-invariant, no terminal cost K = 0, the final state x(tf ) is
free, and tf =∞

The cost functional becomes J(u) =
∫ ∞
t0

L(x(t), u(t))dt→ min

Just in (autonomous and infinite-horizon) case, the cost functional
does not depend on the initial time instant. It follows the value function
V = V (x) depends on x only. Thus, the HJB equation reduces to

0 = inf
u∈U
{L(x, u)+ < Vx(x), f(x, u) >} (4)

Particularly, for the scalar state x ∈ R, the HJB equation (4) is ODE,
and for Example 1, it yields

x4−3
(1

4Vx(t, x)
) 4

3 = 0 ⇒ Vx(x) =
(1

3
) 3

4 4x3 & u∗(t) = −
(1

3
) 1

4
x∗(t)



Sufficient Conditions fro Optimality

All we prove so far is the necessary conditions for optimality

Sufficient condition: Suppose V̂ (t, x) ∈ C1 : [t0, t1]× Rn → R
satisfies the terminal condition V̂ (t1, x) = K(x) and the HJB equation

−V̂t(t, x) = inf
u∈U
{L(t, x, u)+ < V̂x(t, x), f(t, x, u) >}.

Suppose û : [t0, t1]→ U and the corresponding trajectory
x̂ : [t0, t1]→ Rn, initialized with x(t0) = x0 satisfies

L(t, x̂(t), û(t))+ < V̂x(t, x̂(t)), f(t, x̂(t), û(t)) >
= min

u∈U
{L(t, x̂(t), u)+ < V̂x(t, x̂(t)), f(t, x̂(t), u) >}

(which is representable as the Hamiltonian maximization condition)

Then V̂ (t, x) is the optimal cost and û(t) is an optimal control.



Proof of the Sufficiency

Specified with (û(t), x̂(t)), the HJB equation becomes

−V̂t(t, x̂(t)) = L(t, x̂(t), û(t))+ < V̂x(t, x̂(t)), f(t, x̂(t), û(t)) > .

It follows 0 = L(t, x̂(t), û(t)) + d
dt V̂ (t, x̂(t)), thereby yielding

0 =
∫ t1

t0
L(t, x̂(t), û(t))dt+ V̂ (t1, x̂(t1))︸ ︷︷ ︸

K(x̂(t1))

−V̂ (t0, x̂(t0)︸ ︷︷ ︸
x0

).

Thus, V̂ (t0, x0) =
∫ t1
t0
L(t, x̂(t), û(t))dt+K(x̂(t1)) = J(t0, x0, û).

On the other hand, making the same manipulations for another
x(t) : x(t0) = x0, corresponding to u(t), yields:

V̂ (t0, x0) ≤
∫ t1

t0
L(t, x(t), u(t))dt+K(x̂(t1)) = J(t0, x0, u).

This completes the proof: J(t0, x0, û) ≤ J(t0, x0, u).



Historical remarks

The HJB PDE has origins in the work of Hamilton and Jacobi late
1830’s. At that time equation served as a necessary optimality
condition in the calculus of variations.

Its using as a sufficient optimality condition was proposed by
Caratheodori in 1920’s

The principle of optimality seems an almost trivial observation dated
back to the HJB PDE the work of Bernoulli’s solution of the
brachistochrone problem in 1697.



Historical remarks (continued)

In early 1950’s (slightly before Bellman), the optimality principle was
formalized by Isaacs for differential games in terms of the fundamental
game theory PDE, bearing his name (also known as
Hamilton-Jacobi-Isaacs PDE.

Not clear if Bellman realized connection of his work to Hamilton-Jacobi
equation of calculus of variations. This connection was clearly made
by Kalman in early 1960’s who combined the ideas of Bellman and
Caratheodori for derivation of suffcient conditions and who was the
first to call the HJB equation.

Pontryagin’s maximum principle was being developed independently
and in parallel to the work of Bellman and Kalman on dynamic
programming.



HJB Equation vs. Maximum Principle (autonomous case)

Canonical state and costate equations ẋ∗ = Hp|∗, ṗ∗ = −Hx|∗ (5)

Maximum principle u∗(t) = arg max
u∈U

H((x∗(t), u, p∗(t)) (6)

HJB equation yields u∗(t) = arg max
u∈U

H((x∗(t), u,−Vx(t, x∗(t))) (7)

Is the maximum principle (6) deducible from HJB-based relation (7)?

It happens if p∗(t) = −Vx(t, x∗(t)) where the value function V reads

−Vt(t, x∗(t)) = L(t, x∗(t), u∗(t))+ < Vx(t, x∗(t)), f(t, x∗(t), u∗(t)) > .

Since V (t1, x) = K(x) it does match the boundary condition
p∗(t1) = −Kx(x∗(t1)) of the maximum principle.

Thus, it remains to establish that p∗(t) = −Vx(t, x∗(t)) satisfies the
costate equation (5) (homework).



Example: nondifferentiable value function

So, the maximum principle is actually deducible from the Bellman’a
dynamic programming provided that V (t, x) is at least of class C1.

Is in general the value function smooth?

Fixed-time free-endpoint scalar optimal control problem

ẋ = xu, J(u) = x(t1)→ min
u∈[−1,1]
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Figure 5.4: Value function nondifferentiable at x = 0

It turns out that this state of affairs is not an exception; in fact, it is
quite typical for problems with bounded controls and terminal cost to have
nondifferentiable value functions. On the other hand, the local Lipschitz
property—which the function (5.30) does possess—is a known attribute of
value functions for some reasonably general classes of optimal control prob-
lems (we will say more on this below).

The above example clarifies why we cannot derive the maximum princi-
ple from the HJB equation. There really is no “easy” proof of the maximum
principle (except in settings much less general than the one we considered).
More importantly, the difficulty that we just exposed has implications not
only for relating the HJB equation and the maximum principle, but for
the HJB theory itself. Namely, we need to reconsider the assumption that
V ∈ C1 and instead work with some generalized concept of a solution to the
HJB partial differential equation.3 Because of this difficulty, the theory of
dynamic programming did not become rigorous until the early 1980s when,
after a series of related developments, the notion of a viscosity solution was
introduced by Crandall and Lions; that work completes the historical time-
line of key contributions listed in Section 5.1.5. (The maximum principle,
on the other hand, was on solid technical ground from the beginning.) We
turn to viscosity solutions in the next section, postponing a discussion of
further links between the HJB equation and the maximum principle until
Section 7.2.

3We note that generalized solution concepts, particularly those relaxing the continuous
differentiability requirement, are important in the theory of ordinary differential equations
as well. One such solution concept (albeit a very simple one) is provided by the class of
absolutely continuous functions, as we discussed in Section 3.3.1.

V (t, x) =


e−(t1−t)x if x > 0
et1−tx if x < 0

0 if x = 0

HJB equation

−Vt = inf
u
{Vxu} = −|Vxx|, V (t1, x) = x

does not admit a C1 solution (what is typical for constrained control).



Introduction to HJB nonsmooh solutions

One-sided differentials Let v(x) ∈ C0 : Rn → R. Vector ξ ∈ R is a
super-differential D+v(x) of v at x iff ∀y near x it reads

v(y) ≤ v(x)+ < ξ, (y − x) > +o(|y − v|).

Similarly, ξ ∈ R is a sub-differential D−v(x) iff ∀y near x it reads

v(y) ≥ v(x)+ < ξ, (y − x) > −o(|y − v|)
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cvoc-formatted August 24, 2011 7x10

CHAPTER 5

5.3 VISCOSITY SOLUTIONS OF THE HJB EQUATION

We first need to familiarize ourselves with a few basic notions and results
from nonsmooth analysis.

5.3.1 One-sided differentials

Let v : Rn → R be a continuous function (nothing beyond continuity is
required from v). A vector ξ ∈ Rn is called a super-differential of v at a
given point x if for all y near x we have the relation

v(y) ≤ v(x) + 〈ξ, y − x〉 + o(|y − x|). (5.31)

Geometrically, ξ is a super-differential if the graph of the linear function
y 7→ v(x) + 〈ξ, y − x〉, which has ξ as its gradient and takes the value v(x)
at y = x, lies above the graph of v at least locally near x (or is tangent to
the graph of v at x). Figure 5.5 (a) illustrates this situation for the scalar
case (n = 1), in which ξ is the slope of the line. A super-differential ξ is in
general not unique; we thus have a set of super-differentials of v at x, which
is denoted by D+v(x).
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Figure 5.5: (a) super-differential, (b) sub-differential

Similarly, we say that ξ ∈ Rn is a sub-differential of v at x if

v(y) ≥ v(x) + 〈ξ, y − x〉 − o(|y − x|). (5.32)

The graph of the linear function with gradient ξ touching the graph of v at
x must now lie below the graph of v in a vicinity of x (or be tangent to it
at x); see Figure 5.5 (b). The set of sub-differentials of v at x is denoted by
D−v(x).
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Example 5.3 For the function

v(x) =





0 if x < 0,√
x if 0 ≤ x ≤ 1,

1 if x > 1

plotted in Figure 5.6, the reader should have no difficulty in verifying that
D+v(0) = ∅, D−v(0) = [0,∞), D+v(1) = [0, 1/2], and D−v(1) = ∅. As
we will see shortly, these points at which v is not differentiable are the only
“interesting” points to check. �
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Figure 5.6: The function in Example 5.3

We now establish some useful properties of super- and sub-differentials.

Test functions. ξ ∈ D+v(x) if and only if there exists a C1 function
ϕ : Rn → R such that ∇ϕ(x) = ξ, ϕ(x) = v(x), and ϕ(y) ≥ v(y) for all y
near x, i.e., ϕ − v has a local minimum at x. Similarly, ξ ∈ D−v(x) if and
only if there exists a C1 function ϕ such that ∇ϕ(x) = ξ and ϕ − v has a
local maximum at x. (Note that we can always arrange to have ϕ(x) = v(x)
by adding a constant to ϕ, which does not affect the other conditions.)
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Figure 5.7: Characterization of a super-differential via a test function

The function ϕ is sometimes called a test function. For the case of
D+v(x), an example of such a function is shown in Figure 5.7. The above

v(x) =


0 if x > 0√
x if 0 ≤ x ≤ 1

1 if x > 1

The one-sided differentials

D+v(0) = ∅, D−v(0) = [0,∞)

D+v(1) = [0, 1
2], D−v(1) = ∅



Test functions

Super(sub)-differential criterion

A vector ξ ∈ D+v(x) if and only if ∃ a test function φ ∈ C1 : Rn → R
such that ∇φ(x) = ξ, φ(x) = v(x), and φ(y) ≥ v(y) ∀y near x, i.e,

φ− v has a local minimum at x.
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The function ϕ is sometimes called a test function. For the case of
D+v(x), an example of such a function is shown in Figure 5.7. The above

Similarly, ξ ∈ D−v(x) if and only if ∃ a test function φ ∈ C1 : Rn → R
such that ∇φ(x) = ξ and φ− v has a local maximum at x.



Relations with classical differentials

If v is differentiable at x, then

D+v(x) = D−v(x) = {∇v(x)}

If D+v(x) and D−v(x) are both nonempty, then v s differentiable at x
and the above relation holds.

Non-emptness and denseness The sets {x : D+v(x) 6= ∅} and
{x : D−v(x) 6= ∅} are both non-empty, and dense in the domain of v.
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where F : Rn×R×Rn → R is a continuous function. A viscosity subsolution
of the PDE (5.34) is a continuous function v : Rn → R such that

F (x, v(x), ξ) ≤ 0 ∀ ξ ∈ D+v(x), ∀x. (5.35)

As we know, this is equivalent to saying that at every x we must have
F (x, v(x),∇ϕ(x)) ≤ 0 for every C1 test function ϕ such that ϕ − v has a
local minimum at x. Similarly, v is a viscosity supersolution of (5.34) if

F (x, v(x), ξ) ≥ 0 ∀ ξ ∈ D−v(x), ∀x (5.36)

or, equivalently, at every x we have F (x, v(x),∇ϕ(x)) ≥ 0 for every C1

function ϕ such that ϕ−v has a local maximum at x. Finally, v is a viscosity
solution if it is both a viscosity subsolution and a viscosity supersolution.

The above definitions of a viscosity subsolution and supersolution impose
conditions on v only at points where D+v, respectively D−v, is nonempty.
We know that the set of these points is dense in the domain of v. At all
points where v is differentiable, the PDE must hold in the classical sense.
If v is Lipschitz, then by Rademacher’s theorem it is differentiable almost
everywhere.

Example 5.4 Consider the scalar case (n = 1) and let F (x, v, ξ) = 1−|ξ|,
for which the PDE (5.34) is 1 − |∇v(x)| = 0. The functions v(x) = x and
v(x) = −x are both classical solutions of this PDE (so are the functions
v(x) = ±x+ c where c is a constant). We claim that the function v(x) = |x|
is a viscosity solution. For all x 6= 0 this v is differentiable and the PDE is
satisfied, thus we only need to check what happens at x = 0. First, D+v(0) =
∅ hence (5.35) is true. Second, D−v(0) = [−1, 1] and the inequality 1−|ξ| ≥
0 holds for all ξ ∈ [−1, 1], making (5.36) true as well. �

Note the lack of symmetry in the definition of a viscosity solution: the
sign convention used when writing the PDE is important. In the above



Viscosity solutions of PDEs

F (x, v(x),∇v(x)) = 0 (8)

A viscosity subsolution of (9) with a continuous left-hand side is a
continuous function v : Rn → R such that

F (x, v(x), ξ) ≤ 0 ∀ξ ∈ D+(v(x)), ∀x

This is equivalently to say that ∀x one has F (x, v(x), ξ) ≤ 0 ∀ C1-test
functions φ(x) such that φ− v has a local minimum at x.

A viscosity subsolution of (9) is a continuous function v : Rn → R
such that

F (x, v(x), ξ) ≥ 0 ∀ξ ∈ D−(v(x)), ∀x

This is equivalently to say that ∀x one has F (x, v(x), ξ) ≥ 0 ∀ C1-test
functions φ(x) such that φ− v has a local maximum at x.

Finally, v is a viscosity solution if it is both a viscosity supersolution
and a viscosity subsolution



Example: viscosity solution

Consider the scalar PDE

1− |∇v(x)| = 0

with F (x, v, ξ) = 1− |ξ|. By inspection, the functions v(x) = x and
v(x) = −x are both classical solutions of the above PDE (as they
satisfy the PDE outside the origin i.e., almost everywhere).

The function v(x) = |x| is a viscosity solution. Indeed,for checking the
PDE at v = 0, note first that D+v(0) = ∅ hence F (x, v(x), ξ) ≤ 0 is
satisfied trivially. Second, D−v(0) = [−1.1] and 1− |ξ| ≥ 0 holds
∀ ξ ∈ [−1, 1].

Lack of sign symmetry of viscosity solution

By inspection, v(x) = |x| is not a viscosity solution of |∇v(x)|−1 = 0

About terminology

F (x, vε(x),∇v(x)) = ε∆vε(x) viscous fluid equation (9)



HJB equation and the value function

−Vt(t, x)− inf
u∈U
{L(t, x, u)+ < Vx(t, x), f(t, x, u) >} = 0. (10)

Main result for a fixed-time free-end point optimal control

The value function V is a unique viscosity solution of the HJB equation
(10) with the boundary condition V (t1, x) = K(x), ∀x ∈ Rn.

Why V a viscosity solution of (10) with the correct sign convention

Given an arbitrary (t0, x0), one needs to make sure that ∀ C1-test
function φ(t, x) such that φ− V attains a local minimum at (t0, x0),
the inequality holds (proving the claim for viscosity subsolution is left

for yourself):

φt(t0, x0)− inf
u∈U
{L(t0, x0, u)+ < φx(t0, x0), f(t0, x0, u) >} ≤ 0.



Proof of the value function to be a viscosity solution

Suppose on the contrary, ∃ C1-function φ and a control value u0 ∈ U
such that

φ(t0, x0) = V (t0, x0), φ(t, x) ≥ V (t, x) ∀ (t, x) near x (11)

φt(t0, x0)− L(t0, x0, u0)−
〈
φx(t0, x0), f(t0, x0, u0)

〉
> 0 (12)

Consider the state trajectory, initialized with x(t0) = x0 and resulting
from applying u = u0 on [t0, t0 + ∆t]. It follows

V (t0 + ∆t, x(t0 + ∆t)− V (t0, x0) ≤ φ(t0 + ∆t, x(t0 + ∆t)− φ(t0, x0)

=
∫ t0+∆t

t0

d

dt
φ(t, x(t))dt =

∫ t0+∆t

t0

(
φt(t, x(t))

+ < φx(t, x(t)), f(t, x(t), u0) >
)
dt < −

∫ t0+∆t

t0
L(t, x(t), u0)dt



Proof (continued)

Thus

V (t0, x0) >
∫ t0+∆t

t0
L(t, x(t), u0)dt+ V (t0 + ∆t, x(t0 + ∆t)) (13)

that contradicts to the principle of optimality:

V (t0, x0) ≤
∫ t0+∆t

t0
L(t, x(t), u0)dt+ V (t0 + ∆t, x(t0 + ∆t)).

Relation (13) implies that the optimal cost-to-go is higher than the cost
of applying the constant control u = u0 on [t0, t0 + ∆t] followed by an
optimal control on the remaining interval that cannot be true.


