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@ Course Contents

@ Vector spaces and mappings
@ Matrix theory
(*)

Norms

Material:

@ Lecture slides

@ R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge
University Press, 2013.
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Linear Systems |, 2016

Introduction

Multivariable Time-varying Systems
Transition Matrices

Controllability and Observability
Realization Theory

Stability Theory

Linear Feedback

Multivariable input/output descriptions

®© 6 6 6 6 66 o o o

Some Bonus Material
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Linear Systems |, 2016

Rugh, Linear System Theory, 2nd edition

@ Most of 1-7,9-12,13-14
@ Scan 15,20-23,25-29
@ Skip 8,16-19, 24

J. P. Hespanha, Linear Systems Theory. Princeton University Press.
2009.
Some more handouts
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Course Contents

Credits: 9hp

@ 9 Lectures (including this intro)
@ 8 Exercise sessions (1st one on Wednesday, this week)
@ 8 Handins (7 best counts). Strict deadlines!

@ 24 hour take-home exam (date tbd: 8-th Dec or mid-January
2017)
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Vector spaces

A set of elements {vy }}_; in a vector space V over field I is:

linearly independent, if >~}'_; agvy =0 = ay, =0, Vk.

(]

{vi}}_; forms a basis for V.

©

If {vy, }1_, exists for finite n, V is finite-dimensional. Otherwise, V
is infinite dimensional.

A subset U of a vector space V is called a subspace if

auy + bug, Vuy,uo € U, and a,b € F.
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Mappings

A functional mapping A from subspace U/ into a vector space W is
done by associating each u € U with a single w € W. Usually
denoted by u — w = Au.

w is the range (image) of u under A. The subspace is the domain,
denoted by dom(A). The range of A is the set of all images

range(A) :={w € W: w = Au,u € dom(A)}.

The inverse image wy € W is the set of all u € dom(A) such that
wo = Au. We obtain the inverse map of A by associating each
w € range(A) with its inverse image.

A functional mapping A : U4 — W is injective (one-to-one) if, for every
uy, ug € dom(A), u; # ug = Auy # Aug. ltis surjective if
range(A) = W, and bijective if both.
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Matrix representation of mappings

Given two vector spaces V and W over I, a mapping A : V — Wis
linear if

A(av 4 bu) = aAv + bAu, Yu,v €V, and a,b € F.

Let {vy }7_, and {wy }}*, be bases for V and W, respectively. For
each basis vector vy, let {a1x, asg, - - - , ami } be the unique scalars
satisfying

Avk = a1pwW1 + -+ QW

The mn scalars a;;, € F completely characterises the map A. (why?)
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Matrix representation of mappings

Let {vg }7_, and {wy }7, be bases for V and W, respectively. For
each basis vector vy, let {a1x, asg, - - - , ami } be the unique scalars
satisfying

Avk = aypwy + -+ QW -

The mn scalars a;;, € F completely characterises the map A. Given
any v = aqv1 + - + a,v, and let w = Av = Srwy + - - - + Bpwn,

by linearity we obtain

b1 an ... Qip a

Bm Gml --- Qmn Qp

The matrix [a ;] € F™*™ is the matrix representation of the linear map
A w.rt. the input basis {vy }}'_; and output basis {wy, } " .
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Matrix Theory

Definition and standard rules

det(A) = 32, aijcij = 32, ajci;

cofactors ¢;; = (—1)*7 det(A’) (delete row i and col 7)
adj(A) = CT

det(AB) = det(A) det(B), tr(AB) = tr(BA)
(AB)"! = B~'A~land (AB)T = BT AT

Aadj(A) = det(A)I, s0 A~} = 504

d dA dB
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Eigenvalues

Av = v
Characteristic equation p(\) = det(A] — A) =0
If AT = A then eigenvalues are real and there are n orthogonal
eigenvectors: A = VAVT with VIV =T
General A: Jordan normal form

A1
A =V blockdiag (J;)V~! where J; = 1

Ai

Number of Jordan blocks .J; = total number of independent
eigenvectors of A.
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Singular Value Decomposition etc

If A € R™*"™ then
. X 0 T
A—U[O 0]V

where U € R™*™ V € R™" orthogonal (i.e. UUT = I and
VVT = 1) and

¥ = diag(o1,...,0,) > 0, where o; is the square-root of an
eigenvalue of AAT.

A symmetric = A =UXU".
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v
A= (U ... U ..Un) [g 8] VT
v

Null space (kernel) null(A) := {z | Az = 0}
Range space (image) range(A) := {y | y = Az for some =}
R* = range(AT) @ null(A)

—_——

——
spanned by V7...V;.  spanned by V,41...Vp

R™ = range(A) & null(AT)

N— N—
spanned by Uj...U, spanned by Ur41...Un
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Computation of e*!*

Definition: e = ;;o L(At)k. satisfies 42X = AX.
° %e““ = Aedt = e4tA
o If A=VAVT then et = Vdiag(eM)VT
e If A=V blockdiag (J;)V ! then
et = V blockdiag (e”i)V !

it it it N\t
et tettt . S

where e’it = s
Ait te)\it

e)\ﬁ

e

o Laplace-transform L(et) = (sI — A)~!

0 e(AtB)t — oAteBt for gl t & AB = BA. Note: In general,
eAteBt L (A+B)t,
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Quadratic Forms =7 Az

Let's assume AT = A (note that 27 Az = 27 (A + AT)z/2)
Positive definite: A >0 < z7Ax >0,Vz

Positive semi-definite: A >0 < 27Az > 0,Vz #0
We say that A > Biff A— B > 0.

Courant-Fisher formulas when AT = A:

T
A A) = max A2 = max 27 Az
maa:( ) 240 i 2T
. T .
Amin(A) = min £ Az — min 2T Az
) &8 zTz=1

A771171(14)I < A < )\maa:(A)[
A>0<e N\(A) >0,Vi
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A norm is a real-valued function satisfying

lz|| > 0, with equality iff z =0 (1)
lez|| = [l (2)
lz +yll < =]l + llyll (¢)

Some vector norms on R"

el = > lail
1/2
llls = (3 leil?)

[ = max |z

el = (X lei?) ™, 1<p<oo
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Norms: why are they useful?

A sequence {v}}}}_, in a normed vector space V is said to converge,
if Jv € V such that

|lv —vklly — 0, as k — oo.

If such a v exists, it is unique (why?).

Note that norms quantify the ‘closeness’ of two elements in a vector
space, as we have seen above, i.e. converts convergence of {vj } 32,
to a vector v to convergence of {||v — vy ||} 32, to 0!
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1= ([ 1swpae)

For p = 2, called "signal-energy”

L, (I) denotes functions with [, | f(t)[Pdt < oo
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A matrix norm is a function satisfying (1)-(3) above

Examples: (induced matrix norms)

| Az||g
A = sup
| HOéﬁ 20 N
Induced 2-norm
Ax 2
Alls = sup 14212 _ o4
z£0 ||zll2

This is often the "default-norm”.
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Submultiplicative Matrix Norms

If the norm also satisfies ||AB|| < || A||||B]], it is called
submultiplicative

All induced matrix norms are submultiplicative.

Frobenius-norm or Hilbert-Schmidt norm (submultiplicative, but not an
induced norm)

1/2
|AllF = (Z aij|2) = (Trace(ATA)>l/2

i?j
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Scalar Products (Inner Products)

A scalar product (-, ) V x V — C satisfies

Positive definite (x,z) > 0 with equality iff z =0

z)

(y,
Linearity (z, \My1 + A2y2) = A1{x, y1) + Ao (x, yo)

Conjugate symmetric (x,y) =

Examples

<.7}, y> =z'y
(X,Y) = Trace(X™Y)

@(®)(®) = [ =ty y
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Scalar Products (Inner Products)

A vector space V equipped with a scalar product is called a scalar
product (inner product) space.

We say that « and y are orthogonal, denoted = L y if (x,y) =0
For subspace: X | Y meansthatx L y,Vx € X,y €Y
Example: cost is orthogonal to sint in V' = Lo([—m, 7])
Cauchy-Schwarz’ inequality:

n

> il = (z,9) < llzll2llyll

=1

(with equality if and only if  and y are proportional)
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Why are these concepts useful?

In this course, we use vector spaces equipped with an inner product
and corresponding norm. All these vector spaces have an additional
property which is useful in the study of sequence in the vector space
(recall why a norm is useful).

A sequence {v}32, in @ normed vector space V is Cauchy, if for any
e > 0, there exists N () such that

lve — vmlly <, Vk,m > N(e).

Note: Every convergent sequence is Cauchy, but not necessarily the
converse.
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Why are these concepts useful?

A normed vector space + every Cauchy sequence is convergent is
called complete and known as a Banach space.

A Banach space + scalar product is called a Hilbert space.

In a complete vector space, it is possible to check whether a sequence
is convergent by checking if it is Cauchy.

We can consider the modelling of a system in terms of mappings
between signal vector spaces. In this course, we deal with mappings
between Banach spaces.
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Tools

Make sure you know how to simulate an ordinary differential system in
e.g. Matlab/Simulink or Maple

You should also be familiar with using some symbolic manipulation
program such as Maple

You should be able to use the Control System Toolbox (or similar)
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1. Use Matlab and/or Maple to calculate characteristic polynomial,

eigenvalues, eigenvectors and e both numerically and symbolically
0 -1

for A = [1 _1].

2. The following frequency domain based code can be used (why?) to

simulate the step response of the system 1/(s + 1).

N=2"12; dt=0.01; T=N*dt; dw=2%*pi/T;
t = dt*x(0:N-1);
omega = -pi/dt:dw: (pi/dt-dw) ;

u = [ones(1,N/2) zeros(1,N/2)];
U = fft(u);

P = 1./(ixomega+1);

y = ifft(fftshift(P).*U);

plot(t+dt/2,real(y),’-bx’);
hold on;grid on
plot(t,1-exp(-t),’-ro’)
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Handin 1 - continued

Simulate the step response of the open loop system

P(s) = exp (—+/s) and of the closed loop system PC/(1 + PC)
under Pl-control with C'(s) = 1 4 1/s (you might want to tune N and
dt).

Compare the rise time to 50% and the settling times to 99% of the final
value for open loop vs closed loop control.

3. See exercise session.
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