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Stability

For LTI systems ẋ = Ax the stability concept was easy, we had

the two concepts

i) Stability: x(t) remains bounded

ii) Asymptotic stability: x(t) goes to zero

Corresponding to eigenvalues of A

i) either in the open left half plane, or on imaginary axis (if all

such Jordan blocks have size 1)

ii) in the open left half plane

For example ẋ = 0 is stable but not asymptotically stable

Stability is more subtle for LTV systems

And how is LTV stability reflected in the Φ(t, t0)-matrix?



Definition of Uniform Stability

The system ẋ(t) = A(t)x(t) is called

uniformly stable if ∃γ > 0 such that (for all t0 ≥ 0 and x(t0))

px(t)p ≤ γ px(t0)p, ∀t ≥ t0 ≥ 0

uniformly asymptotically stable if it is uniformly stable and

∀δ > 0 : ∃T > 0 :

px(t)p ≤ δ px(t0)p, ∀t ≥ t0 + T , t0 ≥ 0

uniformly exponentially stable if ∃γ ,λ > 0 such that

px(t)p ≤ γ px(t0)pe
−λ(t−t0), t ≥ t0 ≥ 0

Note: Rugh does not include the condition t0 ≥ 0.



Transition Matrix Conditions

From the relation x(t) = Φ(t, t0)x(t0) and the definition of

matrix norm follows that the system ẋ(t) = A(t)x(t) is

uniformly stable if ∃γ > 0

qΦ(t, t0)q ≤ γ , ∀t ≥ t0 ≥ 0

uniformly asymptotically stable if it is uniformly stable and

∀δ > 0 : ∃T > 0 :

qΦ(t, t0)q ≤ δ , ∀t ≥ t0 + T , t0 ≥ 0

uniformly exponentially stable if ∃γ ,λ > 0 such that

qΦ(t, t0)q ≤ γ e−λ(t−t0), ∀t ≥ t0 ≥ 0



Comparisons

The first stability concept is the weakest.

The system ẋ = 0 is unif. stable but not unif. asymp. stable

The third condition at first looks stronger than the second, but

surprisingly enough they are equivalent.

In fact we have the following result



Criterion for Exponential Stability

For the equation ẋ(t) = A(t)x(t) with qA(t)q bounded, the

following three conditions are equivalent:

(i) The equation is uniformly exponentially stable.

(ii) The equation is uniformly asymptotically stable.

(iii) There exists a β > 0 such that

∫ t

τ
qΦ(t,σ )qdσ ≤ β ∀t ≥ τ ≥ 0



Proof

(i) [ (iii) is obvious.

(iii) [ (ii) Let α = suptqA(t)q. Then asym. stab. follows from
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Proof of (ii)[ (i)

Assume asymptotic stability. To prove exponential stability,

select γ ,T > 0 such that

qΦ(t, t0)q ≤ γ ∀t ≥ t0

qΦ(t0 + T , t0)q ≤
1

2
∀t ≥ t0 + T

Then

qΦ(t0 + kT , t0)q ≤ qΦ(t0 + kT , t0 + (k− 1)T)q ⋅ ⋅ ⋅ qΦ(t0 + T , t0)q

≤
1

2k
, k = 1, 2, . . .

qΦ(t, t0)q ≤ qΦ(t, t0 + kT)q ⋅ qΦ(t0 + kT , t0)q ≤
γ

2k
, t ≥ t0 +

This proves exponential stability with λ = ln2
T

.



An observation

The equation ẋ(t) = A(t)x(t) is uniformly exponentially stable

with rate λ , if and only if the equation

ż(t) = [A(t) −α I]z(t)

is uniformly exponentially stable with rate λ +α .

Proof. The lemma follows from the fact that x(t) solves ẋ = Ax
if and only if z(t) = e−α tx(t) solves ż = [A−α I]z.



Warning: Stability Under Coordinate Change

Note that the scalar system

ẋ = x

is not stable, but the change of coordinates z(t) = e−2tx(t)
gives the stable equation

ż = −z

This motivates some care when allowing for time varying

coordinate changes



Lyapunov Transformation

An n$ n continuously differentiable matrix function T(t) is

called a Lyapunov transformation if there exist ρ > 0 s.t.

qT(t)q ≤ ρ, qT(t)−1q ≤ ρ ∀t

For such a transformation we have

qΦx(t, t0)q = qT(t)Φz(t, t0)T(t0)
−1q ≤ ρ2qΦz(t, t0)q

qΦz(t, t0)q = qT(t)
−1Φx(t, t0)T(t0)q ≤ ρ2qΦx(t, t0)q

Hence both uniform stability and uniform exponential stability

are preserved under a coordinate transformation

x(t) = T(t)z(t) defined by a Lyapunov transformation.



Lyapunov Equation

The equation ẋ(t) = A(t)x(t) is uniformly exponentially stable

with rate λ , if there exists Q > 0 such that

A(t)TQ + QA(t) ≤ −2λQ

or P > 0 such that

PA(t)T + A(t)P ≤ −2λP

Note: For LTV systems, existence of such Q is a sufficient but

not necessary condition for unif. exp. stability (for LTI systems it

is both sufficient and necessary)



Proof

Given Q, we have

d

dt
xTQx = xT [A(t)TQ + QA(t)]x ≤ −2λ(xTQx)

so x(t)TQx(t) ≤ e−2λ tx(0)TQx(0). From this follows that

qx(t)q2 ≤ e−2λ tx(0)TQx(0)/λmin(Q).

Given P, put Q = P−1 and proceed as before



Linear Matrix Inequalities

An LMI is an expression of the form

A0 + x1A1 + . . . xkAk ≥ 0

where x1, . . . , xk are scalars and A j given symetric matrices

Many control problems can be formulated as a search for x

solving an LMI, and efficient SW exist for solving LMIs

Note that the scalars xk can occur as elements in vectors or

matrices. For example, the requirements

ATQ + QA ≤ 0, Q = QT

is an LMI (x being the elements of Q on or above the diagonal)



Matlab Software - CVX

After downloading CVX:

A1=[-5 -4;-1 -2];

A2=[-2 -1; 2 -2];

cvx_begin sdp

variable Q(2,2)

subject to

A1’*Q+Q*A1 < 0

A2’*Q+Q*A2 < 0

Q >= eye(2)

cvx_end

Q =

4.1169 -0.8749

-0.8749 6.8597



Feedback law from linear matrix inequality

If there exist Y > 0 and K such that

(AY + BK ) + (AY + BK )T ≤ −2λY

then the LTI system

ẋ = (A+ BL)x

with L = KY−1, is uniformly exponentially stable with rate λ .



LTV Lyapunov Functions

By noting that

d

dt
(xT (t)Q(t)x(t)) = xT(t)

(

AT (t)Q(t) + Q(t)A(t) + Q̇(t)
)

x(t)

it is easy to obtain several sufficient criteria for LTV stability

(see Rugh Ch 7 for details)



Lyapunov Criteria for LTV

1. There exists η > 0, ρ > 0,Q(t):

η I ≤ Q(t) ≤ ρ I, AT(t)Q(t) + Q(t)A(t) + Q̇(t) ≤ 0

[ pxp2 ≤ ρ/ηpx(t0)p
2 [ uniform stability

2. There exists η > 0, ρ > 0,ν > 0,Q(t):

η I ≤ Q(t) ≤ ρ I, AT(t)Q(t) + Q(t)A(t) + Q̇(t) ≤ −ν I

[ pxp2 ≤ ρ
η e
− ν

ρ (t−t0)px(t0)p
2 [ uniform exponential stability

3. There exists ρ > 0,ν > 0,Q(t), t0:

qQ(t)q ≤ ρ, AT (t)Q(t) + Q(t)A(t) + Q̇(t) ≤ −ν I

Q(t0) not pos. semidef. [ not uniform stable



Constructing LTV Lyapunov Functions

The matrix differential equation

S(t) + AT (t)Q(t) + Q(t)A(t) + Q̇(t) = 0

has the solution

Q(t) =

∫ ∞

t

ΦT(σ , t)S(σ )Φ(σ , t)dσ

if A(t) is uniformly exponentially stable and S(t) bounded.



Stability Margins

If the system is exponentially stable, stability will be maintained

for small pertubations of the state equations

For instance one has the following result (Rugh exercise 8.12)

Let ẋ = Ax be exponentially stable and let �(x) satisfy

�(x) = o(qxq), as x→ 0

then all solutions of

ẋ = Ax + �(x)

that start sufficiently close to the origin, converge to the origin



Uniform BIBO stability for LTV systems

The system

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)

is called bounded input bounded output stable if there is η such

that the zero-state response (i.e. x(t0) = 0)) satisfies

supt≥t0qy(t)q ≤ η supt≥t0qu(t)q

for any t0 and input u(t).



Criteria for uniform BIBO-stability

1. Uniform BIBO stability \ exists ρ such that the impulse

response satisfies

∫ t

τ
q�(t,σ )qdσ ≤ ρ, ∀τ , t

2. Assume A(t), B(t),C(t) are bounded and that controller and

observer Gramians satisfy

ǫI ≤ W(t− δ , t)

ǫI ≤ M(t, t+ δ )

for some positive ǫ,δ . Then

Uniform BIBO stability \ uniform exponential stability



Discrete Time

There are no big surprises going over to discrete time.

Φ(t, t0) will change to Φ(k, k0)

V (t) = xT(t)Q(t)x(t) and V̇ (t) < 0 will change to

V (k) = xT(k)Q(k)x(k) and V (k+ 1) − V (k) < 0

Bounds of the form ≤ e−λ t, λ > 0 will change to ≤ λ k, λ < 1

etc

Typical results are included on the next three frames



Internal Stability - Discrete Time

Definitions analog with continuous time.

With Φ(k, k0) = A(k− 1) ⋅ ⋅ ⋅ A(k0 + 1)A(k0) we get e.g.

uniformly stable if ∃γ > 0

qΦ(k, k0)q ≤ γ , ∀k ≥ k0 ≥ 0

uniformly exponentially stable if ∃γ ,λ < 1 such that

qΦ(k, k0)q ≤ γ λ k−k0 , ∀k ≥ k0 ≥ 0

\ ∃β :

k
∑

i=k0

qΦ(k, k0)q ≤ β , ∀k ≥ k0 ≥ 0



Lyapunov criteria - Discrete Time

With Lyapunov function V (k) = xT(k)Q(k)x(k) we e.g. have

V (k+ 1) − V (k) = xT(k)(AT (k)Q(k+ 1)A(k) − Q(k))x(k)

Therefore discrete time results will look like:

If there exists positive η, ρ,ν and Q(k) so that

η I ≤ Q(k) ≤ ρ I, AT (k)Q(k+ 1)A(k) − Q(k) ≤ −ν I

then the system is uniform exponentially stable.



Uniform BIBO stability - Discrete Time

Impulse response �(k, k0) = C(k)Φ(k, k0 + 1)B(k0)

1. Uniform BIBO stability \ exists ρ such that

k−1
∑

i=k0

q�(k, i)q ≤ ρ, ∀k ≥ k0 + 1

2. Assume A(k), B(k),C(k) are bounded and that controller

and observer Gramians satisfy

ǫI ≤ W(k− l, k)

ǫI ≤ M(k, k+ l)

for some positive ǫ and integer l. Then

Uniform BIBO stability \ uniform exponential stability



Feedback - Well Posedness

r y
e−s − 1

−1

Σ

The transfer function from r to y is

e−s − 1

1+ e−s − 1
= 1− es

This would give a way to implement the non-causal block es.

What is wrong?



Well Posedness

w1

w2

e1

e2
Σ

Σ P

K

For rational functions P and K we say that the feedback system

is well-posed if the transfer functions from w=

[

w1
w2

]

to e =

[

e1
e2

]

are all proper rational functions

Lemma 5.1 [ZDG] The feedback system is well-posed iff

I − DPDK is invertible

(where DP and DK are the direct terms in P and K )



Internal Stability

w1

w2

e1

e2
Σ

Σ P

K

Definition of Internal stability:

All states in P and K go to zero when w = 0.

Lemma 5.3 The (well-posed) feedback system in the figure is

internally stable iff the "Gang of Four" transfer matrix

[

I −K
−P I

]−1

=

[

(I − KP)−1 K (I − PK )−1

P(I − KP)−1 (I − PK )−1

]

from (w1,w2) to (e1, e2) is asymptotically stable.


