
Lecture 3

Controllability

Observability

Controller and Observer Forms

Balanced Realizations

Rugh, chapters 9,13, 14 (only pp 247-249) and (25)



Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

any state x0 can be made an equilibrium

any state trajectory x(t) can be obtained

any output trajectory y(t) can be obtained

The most fruitful definition has instead turned out to be the
following



Controllability

The state equation

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0

is called controllable on (t0, t f ), if for any x0, there exists u(t)
such that x(t f ) = 0 (“Controllable to origin”)

Question: Is this equivalent to the following definition:

“for x0 = 0 and any x1, there exists u(t) such that x(t f ) = x1”

(“Controllable from origin”)

The audience is thinking!

Hint: x(t f ) = Φ(t f , t0)x(t0) +
∫ t f
t0

Φ(t f , t)B(t)u(t)dt



Controllability Gramian

The matrix function

W(t0, t f ) =

∫ t f
t0

Φ(t0, t)B(t)B(t)
TΦ(t0, t)

Tdt

is called the controllability Gramian.

A main result is the following



Th.1 Controllability Criterion (Rugh 9.2)

The state equation is controllable on (t0, t f ) if and only if the
controllability Gramian W(t0, t f ) is invertible.

Remark: We will see later (Lec.6) that the minimal (squared)
control energy, defined by quq2 :=

∫ t f
t0
pup2dt, needed to move

from x(t0) = x0 to x(t f ) = 0 equals xT0 W(t0, t f )
−1x0.



Proof of Th.1

i) Suppose first W is invertible. Given x0 the control signal

u(t) = −BTΦT(t0, t)W
−1(t0, t f )x0

will give x(t f ) = 0 (check!). Hence the system is controllable.

ii) Suppose instead the system is controllable. Want to show W
invertible, i.e. that Wx0 = 0 implies x0 = 0.

Find u so 0 = Φx0 +
∫

ΦBudt, i.e.
x0 = −

∫ t f
t0

Φ(t0, t)B(t)u(t)dt

xT0 x0 = −

∫ t f
t0

xT0 Φ(t0, t)B(t)︸ ︷︷ ︸
:=z(t)

u(t)dt

But this shows x0 = 0 since

qz(t)q2 =

∫ t f
t0

xT0 Φ(t0, t)B(t)B
T (t)ΦT (t0, t)x0dt = x

T
0 Wx0 = 0



Th2. LTI Controllability Test - (Rugh 9.5)

The following four conditions are equivalent:

(i) The system ẋ(t) = Ax(t) + Bu(t) is controllable.

(ii) rank[B AB A2B . . . An−1B] = n.

(iii) λ ∈ C, pTA = λpT , pTB = 0 [ p = 0.

(iv) rank [λ I − A B] = n ∀λ ∈ C.

The conditions (iii) and (iv) are called the PBH test
(Popov-Belevitch-Hautus), see p221.

Notation: C (A, B) := [B AB A2B . . . An−1B]



Th.3 LTI Uncontrollable System Decomposition

Suppose that 0 < q< n and

rank
[
B AB A2B . . . An−1B

]
= q < n

Then there exists an invertible P ∈ Rn$n such that

P−1AP =

[
Â11 Â12

0 Â22

]
, P−1B =

[
B̂11
0

]

where Â11 is q$ q, B̂11 is q$m, and

rank[B̂11 Â11 B̂11 . . . Â
q−1
11 B11] = q



Range and Null Spaces

Range space (Image) of M : X → Y:

R(M) = {Mx : x ∈ X } ⊂ Y

Null space (Kernal) of M : X → Y:

N (M) = {x : Mx = 0} ⊂ X

Example:

R

([
1 2

0 0

])
=

{
α

[
1

0

]
: α ∈ R

}

N

([
1 2

0 0

])
=

{
α

[
2

−1

]
: α ∈ R

}



Cayley-Hamilton Theorem

Let p(s) := det(sI − A) be the char. polynomial of the square
matrix A, then

p(A) = 0

This means that An, where n is the size of A, can be written as
a linear combination of Ak of lower order

An = −an−1A
n−1 − . . .− a1A− a0I



Proof Th. 3

Use the n$ n matrix P = [P1 P2] where P1 is an n$ qmatrix
with lin. indep. columns taken from C (A, B) and P2 is any
n$ (n− q) matrix making P invertible. Introduce the notation

P−1 =

[
M

N

]
, then

[
M

N

]
[P1 P2] =

[
Iq 0

0 In−q

]
. Note NP1 = 0.

R(B) ⊂R(P1) [ NB = 0[ B̂ = P−1B =

[
M

N

]
B =

[
B̂1
0

]

R(AP1) ⊂ R(P1) [ NAP1 = 0[ Â = P
−1AP =

[
M

N

]
AP =

[
Â11 Â12

0 Â22

]

rankC (Â11, B̂1) = rankC (A, B) = q



Proof of Th. 2

(i) [ (ii) If (ii) fails, then after a coordinate change as in
Theorem 3, x̂2 is unaffected by the input, so (i) fails.

(ii) [ (i) If pTW(t0, t f )p = 0 for some p ,= 0, then

∫ t f
t0

pT eA(t0−t)BBT eA
T(t0−t)pdt = 0

pT eA(t0−t)B = 0 ∀t ∈ [t0, t f ]

Differentiation with respect to t at t = t0, gives

pT [B AB . . . An−1B] = 0,

so (ii) fails.



Proof Th2 continued

(ii) [ (iii) If iii fails, i.e. pTA = λpT and pTB = 0 for p ,= 0
then pT [B AB . . . An−1B] = 0, so (ii) fails.

(iii) [ (ii) If rank[B . . . An−1B] = q < n then let P be
defined as in Theorem 3 and let p2T Â22 = λp2

T and
pT = [0 p2

T ]P−1. Then

pTB = [0 p2
T ]

[
B̂11
0

]
= 0

pTA = [0 p2
T ]

[
Â11 Â12
0 Â22

]
P−1 = λ[0 p2

T ]P−1 = λpT

so (iii) fails.

(iv) \
{
pT [λ − A B] = 0 [ p = 0

}
\ (iii)



Tank example - controllable?

ẋ =

[
−1 0

0 −1

]
x +

[
1

1

]
u

ẋ =

[
−1 0

0 −2

]
x +

[
1

1

]
u



Tank example - controllable?

u1

u2

ẋ =



−1 0 0

0 −1 0

0 0 −1


 x +



1 0

1 1

0 1


u



Example - Single Input Diagonal Systems

For which λ i, bi is this system controllable?

ẋ =




λ1 0

λ2
. . .

0 λn


 x +




b1
b2
...
bn


u

Method 1: When is the controllability matrix invertible?

C (A, B) =




b1 b1λ1 b1λ
2
1 . . .b1λ

n−1
1

b2 b2λ2 b2λ
2
2 . . .b2λ

n−1
2

...
bn bnλn bnλ

2
n . . . bnλ

n−1
n




After some work: When all λ i are distinct and all bi nonzero.

Method 2: The PBH-test gives you this result immediately!



LTV Reachability

The equation

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = 0

is called reachable on (t0, t f ), if for any x f , there exists u(t)
such that x(t f ) = x f .

The matrix function

Wr(t0, t f ) =

∫ t f
t0

Φ(t f , t)B(t)B(t)
TΦ(t f , t)

Tdt

= Φ(t f , t0)W(t0, t f )Φ(t f , t0)
T

is called the reachability Gramian.

Continuous time controllability and reachability are equivalent



LTV Observability

The equation

ẋ(t) = A(t)x(t), x(t0) = x0

y(t) = C(t)x(t)

is called observable on [t0, t f ] if any initial state x0 is uniquely
determined by the output y(t) for t ∈ [t0, t f ].

It is called reconstructable on [t0, t f ] if the state x(t f ) is
uniquely determined by the output y(t) for t ∈ [t0, t f ].

In continuous time, observability and reconstrubality are
equivalent (why?)



Observability Gramian

The matrix function

M(t0, t f ) =

∫ t f
t0

Φ(t, t0)
TC(t)TC(t)Φ(t, t0)dt

is called the observability Gramian of the system

ẋ(t) = A(t)x(t)

y(t) = C(t)x(t)

Remark: Operator interpretation (see later)

M(t0, t f ) = L
∗L

where L : Rn → Lm2 (t0, t f ) with

(Lx0)(t) = C(t)Φ(t, t0)x0, x0 ∈ Rn



Degree of Observability

The following two conditions are equivalent

(i) The system {A(t),C(t)} is observable on [t0, t f ].

(ii) M(t0, t f ) > 0

Interpretations: Consider y(t) = Lx0 + e(t)

i) If e is white noise with unit variance then Epy− Lx0p2 is
minimized for x̂0 = (L∗L)−1L∗y and the variance of the
estimate is (L∗L)−1 = M(t0, t f )

−1.

ii) The set of x0 for which ∃ e(t) with qeq2 ≤ σ 2 such that
y(t) " 0 is given by

xT0 M(t0, t f )x0 ≤ σ 2



Th. 5 (Rugh 9.11) - LTI Observability

The following four conditions are equivalent:

(i) The system ẋ(t) = Ax(t), y(t) = Cx(t) is observable.

(ii) rank




C

CA
...

CAn−1


 = n.

(iii) λ ∈ C : Ap = λp, Cp= 0 [ p = 0

(iv) rank
[

λ I − A
C

]
= n ∀λ ∈ C.



Theorem 6 - Unobservable State Equation

Suppose that rank




C

CA
...

CAn−1


 = l < n

Then there exists an invertible Q ∈ Rn$n such that

Q−1AQ =

[
Â11 0

Â21 Â22

]
, CQ =

[
Ĉ11 0

]

where Â11 is l $ l, Ĉ11 is p$ l, and rank




Ĉ11
Ĉ11 Â11

...
Ĉ11 Â

l−1
11


 = l.



LTI Controller Canonical Form - Single Input

Suppose (A, b) is controllable. There is an invertible P such
that a state transformation will bring the system to the form

PAP−1 = Ac =




0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−a0 −a1 . . . −an−1


 , PB = Bc =




0
...
0

1




det(sI − A) = sn + an−1s
n−1 + . . .+ a1s+ a0



Proof

Introduce some notation for C −1(A, b):


M1
...
Mn


 :=

[
b Ab . . . An−1b

]−1
[
MnA

kb = 0, k = 0, . . . ,n− 2
MnA

n−1b = 1

We can use the transformation z = Px where

P =




Mn
MnA

...
MnA

n−1




That P is invertible follows from calculation of PC (the new
controllability matrix)



Proof

PC =




Mn
MnA

...
MnA

n−1



[
b Ab . . . An−1b

]
=




0 . . . 0 1
...

... . . . ⋆
0 1 ⋆ ⋆
1 ⋆ . . . ⋆




PA =




MnA

MnA
2

...
MnA

n


 =




0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−a0 −a1 . . . −an−1







Mn
MnA

...
MnA

n−1


 = AcP

PB =




Mnb

MnAb
...

MnA
n−1b


 =




0
...
0

1


 = Bc



Controllability Index

To construct the corresponding controller form when we have
multiple inputs (m > 1) we need the following

Definition: Let B = [B1 . . . Bm]. For j = 1, . . . ,m, the
controllability index ρ j is the smallest integer such that Aρ jBj is
linearly dependent on the column vectors occuring to the left of
it in the controllability matrix

[
B AB . . . An−1B

]



Notation for Controller Form

Given a contr. system {A, B}, with controllability indices
ρ1, . . . ρm, define

M =



M1
...
Mn


 :=

[
B1 AB1 . . . A

ρ1−1B1 . . . Bm . . . A
ρm−1Bm

]−1

P =



P1
...
Pm


 , Pi =




Mρ1+⋅⋅⋅+ρi

Mρ1+⋅⋅⋅+ρiA
...

Mρ1+⋅⋅⋅+ρiA
ρi−1




Notice that it is rather easy to write Matlab code for this.

See Rugh 13.9 for the proof of the following result



Theorem 7, Controller Form - Multiple Inputs

The transformation z = Px gives (Ac, Bc) with

Ac =




1
. . .

1

⋆ . . . . . . ⋆ ⋆ . . . . . . ⋆ ⋆ . . . . . . ⋆

1
. . .

1

⋆ . . . . . . ⋆ ⋆ . . . . . . ⋆ ⋆ . . . . . . ⋆






Theorem 7, Controller Form - Multiple Inputs

Bc =




1 ⋆ . . . ⋆

0 1 ⋆ ⋆

0 . . . 0 1




The block sizes equal the controllability indices ρi.

If B is not full rank, Bc will have a stair-case form.



LTI Feedback & Eigenvalue Assignment (Rugh 14.9)

Using the controller form it is now easy to prove

Suppose (A, B) is controllable. Given a monic polynomial p(s)
there is a feedback control u = −Kx so that

det(sI − A− BK ) = p(s).

Proof We can get rid of the ⋆ elements in Bc by writing
Bc = B̃cT where T is an upper triangular matrix with right
inverse. Introduce the new control signal ũ = Tu. By state
feedback we can now change each line of stars in Ac. We can
for instance transform Ac to a controller form with one big block,
with the last row containing the coefficients of p(s).



Definition - Observability Index

Let CT = [C1
T . . . Cp

T ]T . For j = 1, . . . , p, the observability
index η j is the smallest integer such that CjAη j is linearly
dependent on the row vectors occuring above it in the
observability matrix




C

CA
...

CAn−1






Theorem 8 -Observer form

Suppose (C, A) is observable. Then there is a transformation
z = Px, to the form ż = Aoz, y = Coz with

Ao = transpose of the form for Ac above

Co = transpose of the form for Bc above

The size of the blocks equals the observability indices η j .



Theorem 9 - Time-Invariant Gramian

Let A be exponentially stable. Then, the reachability Gramian
Wr(−∞, 0) equals the unique solution P to the matrix equation

PAT + AP = −BBT

Similarly, the observability Gramian M(0,∞) equals the
solution Q of

QA + ATQ = −CTC



Proof of Theorem 9

Let P = Wr(−∞, 0) =
∫∞
0
eAσ BBT eA

Tσ dσ . Then

PAT + AP =

∫ ∞

0

�

�σ

(
eAσ BBT eA

Tσ
)
dσ

=
[
eAσ BBT eA

Tσ
]∞
0

= −BBT

The linear operator (Lyapunov 1893)

L(P) = AP + PAT

hasR(L) = Rn$n soN (L) = {0} and the solution P is unique.

The equation for the observability Gramian is obtained by
replacing A, B with AT ,CT .



Balanced Realization

For the stable system (A, B,C), with Gramians P and Q, the
variable transformation x̂ = Tx gives

P̂ = TPT∗

Q̂ = T−∗QT−1

Choosing R,T , unitary U and diagonal Σ from

Q = R∗R (Choleski Factorisation)

RPR∗ = UΣ2U ∗ (Singular Value Decomposition)

T = Σ−1/2U ∗R

gives (check)

P̂ = Q̂ = Σ

The corresponding realization (Â, B̂, Ĉ) is called a balanced
realization of the system (A, B,C).



Truncated Balanced Realization

Let the states be sorted such that Σ is decreasing. The
diagonal elements of Σ measure “how controllable and
observable” the corresponding states are. With

Â =

[
Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
Ĉ =

[
Ĉ1 Ĉ2

]

Σ =

[
Σ1 0

0 Σ2

]

the system (Â11, B̂1, Ĉ1) is called a truncated balanced
realization of the system (A, B,C).

If Σ1 >> Σ2 the truncated system is probably a good
approximation. Choose either D = 0 or to get correct DC-gain.



Example (done with balreal in MATLAB)

C(sI − A)−1B =
1− s

s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1

Σ = diag{1.98, 1.92, 0.75, 0.33, 0.15, 0.0045}

Ĉ(sI − Â)−1 B̂ =
0.20s2 − 0.44s+ 0.23

s3 + 0.44s2 + 0.66s+ 0.17

10
0

10
1

−100

−80

−60

−40

−20

0

20
Bode Magnitude Diagram



Bonus: Full Kalman Decomposition

Simultaneous controller and observer decomposition

Use P =
[
P1 P2 P3 P4

]
where Pi has ni columns with

Columns of
[
P1 P2

]
basis for R(C)

Columns of P2 basis for R(C) ∩N (O)
Columns of

[
P2 P4

]
basis forN (O)

Columns of P3 chosen so P invertible.

Â =




Â11 0 Â13 0

Â21 Â22 Â23 Â24
0 0 Â33 0

0 0 Â43 Â44


 , B̂ =




B̂1
B̂2
0

0




C =
[
Ĉ1 0 Ĉ3 0

]



Kalman’s Decomposition Theorem

The system (Â11, B̂1, Ĉ1) is both controllable and observable.

It is of minimal order, n1

The transfer function equals Ĉ1(sI − Â1)−1 B̂1.



Bonus: More on Controllability

A, B is controllable if and only if

The only C for which C(sI − A)−1B = 0,∀s is C = 0

A,C is observable if and only if

The only B for which C(sI − A)−1B = 0,∀s is B = 0

Proof: 0 = C(sI − A)−1B =

∞∑

k=0

CAkB/sk+1 \ 0 = CAkB, ∀k \

0 = C
[
B AB . . . An−1B

]
\ 0 =




C

CA
...

CAn−1


 B



Bonus: Parallel Systems

Let G1(s) = C1(sI − A1)−1B1 and G2(s) = C2(sI − A2)−1B2

If A1 and A2 have no common eigenvalues then

G1(s) + G2(s) " 0 =[ G1(s) = G2(s) = 0

Proof: Can assume both systems are minimal. From

G1(s) + G2(s) =
[
C1 C2

] [sI − A1 0

0 s− A2

]−1 [
B1
B2

]
= 0

and the fact that
[
C1 C2

]
,

[
A1 0

0 A2

]
is observable (PBH-test),

the previous frame shows that
[
B1
B2

]
=

[
0

0

]



Bonus: System Zeros (SISO)

Assume (A, b, c) minimal and that z is not an eigenvalue of A.

Then the following are equivalent

G(z) = c(zI − A)−1b+ d = 0

With u0 arbitrary and x0 := (zI − A)−1bu0 we have
[
zI − A −b
c d

] [
x0
u0

]
= 0

The following matrix looses rank
[
zI − A −b
c d

]



Bonus: Series Connection SISO

Given two minimal systems ni(s)/di(s) = ci(sI − Ai)−1bi,
i = 1, 2

Then the series connection n2(s)
d2(s)

n1(s)
d1(s)

is

uncontrollableZ[ there is z so n1(z) = d2(z) = 0

unobservableZ[ there is z so n2(z) = d1(z) = 0

Proof:

Controllable, check when rank
[
zI − A1 0 b1
−b2c1 zI − A2 0

]
≤ n

Observable, check when rank



zI − A1 0

−b2c1 zI − A2
0 c2


 ≤ n


