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Linear Systems, 2016 - Lecture 1

Introduction

Multivariable Time-varying Systems

Transition Matrices

Controllability and Observability

Realization Theory

Stability Theory

Linear Feedback

Multivariable input/output descriptions

Some Bonus Material



LionSealWhite

Lecture 1

State equations

Linearization

Examples

Transition matrices

Rugh, chapters 1-4

Main news:

Linearization around trajectory

Transition matrix Φ(t, τ)
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Linear Time-Invariant (LTI) System

State Representation

ẋ(t) = Ax(t) +Bu(t), x(0) = 0
y(t) = Cx(t) +Du(t)

Convolution Representation

y(t) =
∫ t

0
G(t− τ)u(τ)dτ

G(t) = CeAtB + δ(t)D (impulse response)

Transfer Function Representation

y(s) = G(s)u(s)

G(s) :=
∫ ∞

0−
e−stG(t)dt = C(sI −A)−1B +D
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Time-varying Linear System

State Representation

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = 0
y(t) = C(t)x(t) +D(t)u(t)

Integral Representation

y(t) =
∫ t

0
G(t, τ)u(τ)dτ +D(t)u(t)

Operator Representation

y = Lu
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Example: Two Tank System

Flow: q(t)

Volumes: V1, V2 (constant)

Concentrations: u(t), x1(t), x2(t)

Dynamics: {
d
dt(V1x1) = qu− qx1
d
dt(V2x2) = qx1 − qx2

ẋ(t) =
[
− 1
V1

0
1
V2

− 1
V2

]
q(t)x(t) +

[
1
V1
0

]
q(t)u(t)
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Example: Electric Circuit (RLC circuit)

See Fig 2.4

Capacitor Dynamics:

i(t) = d

dt
(c(t)uc(t))

Inductor Dynamics:

ul(t) = d

dt
(l(t)i(t))

State Representation: x = [uc i]T

ẋ(t) =
[
−ċ/c 1/c
−1/l −

(
r + l̇

)
/l

]
x(t) +

[
0

1/l

]
u(t)
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Discrete Time LTI System

State Representation

x(k + 1) = Ax(k) +Bu(k), x(0) = 0
y(k) = Cx(k) +Du(k)

Convolution Representation

y(k) =
k∑
l=0

G(k − l)u(l)

G(k) =
{
D k = 0
CAk−1B k ≥ 1 (impulse response)

Transfer Function Representation

y(z) = G(z)u(z)

G(z) :=
∞∑
k=0

G(k)z−k = C(zI −A)−1B +D
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Example: Shift Register

x1 x2 x3 x4

x =
[
x1 x2 x3 x4

]T

x(k + 1) =


1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

x(k) +


1
0
0
0

u(k)

y(k) =
[
0 0 0 1

]
x(k)
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Linearization around a trajectory

Consider

ẋ(t) = f(x(t), u(t), t), x(0) = x0

with solution x̃(t) for u(t) = ũ(t) and x0 = x̃0.

Let xδ = x− x̃. Assuming differentiability of f ,

f(x̃+ xδ, ũ+ uδ, t)− f(x̃, ũ, t)

= ∂f

∂x
(x̃, ũ, t)xδ + ∂f

∂u
(x̃, ũ, t)uδ + o(|xδ|, |uδ|)

Hence, with

A(t) = ∂f

∂x
(x̃, ũ, t), B(t) = ∂f

∂u
(x̃, ũ, t)

the linearization around (x̃(t), ũ(t)) is

ẋδ(t) = A(t)xδ(t) +B(t)uδ(t), xδ(0) = x0 − x̃0
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Example: Communications Satellite

Spherical coordinates: x = [r ṙ θ θ̇ φ φ̇]T

Input: u = [ur uθ uφ]T , Output: y = [r θ φ]T

Dynamics:

ẋ(t) = f(x(t), u(t), t)

=



ṙ

rθ̇2cos2φ+ rφ2 − k/r2 + ur/m

θ̇

−2ṙθ̇/r + 2θ̇φ̇sinφ/cosφ+ uθcosφ/(mr)
φ̇

−θ̇2cosφsinφ− 2ṙφ̇/r + uφ/(mr)
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Linearized Communications Satellite

Circular equatorial orbit:

x̃ =
[
r̃ 0 ω̃t ω̃ 0 0

]T
ũ ≡ 0

Linearization: ẋ = Ax+Bu with

A =


0 1 0 0 0 0

ω̃2 − 2k
ω̃3 0 0 2ω̃r̃ 0 0

0 0 0 1 0 0
0 −2ω̃/r̃ 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −ω̃2 0

 ,

B =


0 0 0

1/m 0 0
0 0 0
0 1/(mr̃) 0
0 0 0
0 0 1/(mr̃)
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Linearization in Matlab/Simulink

[X,U,Y,DX]=TRIM(’SYS’,X0,U0,Y0,IX,IU,IY)
fixes X, U and Y to X0(IX), U0(IU) and Y0(IY).
The variables IX, IU and IY are vectors of indices.

[A,B,C,D]=LINMOD(’SYS’,X,U) allows the state vector, X,
and input, U, to be specified. A linear model will
then be obtained at this operating point.
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Linearization in Matlab/Simulink
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LTV Systems - Fundamental Matrix

Can we find a counter-part to the exponential matrix

Φ(t) = etA

for linear time-varying systems?

What properties of the LTI case carry over to LTV systems?
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Discrete Time Systems

Given a matrix sequence A(0), A(1), . . . the equation

x(k + 1) = A(k)x(k), x(k0) = x0

has the unique solution

x(k) = Φ(k, k0)x0

defined by the transition matrix

Φ(k, k0) =
{
A(k − 1) · · ·A(k0), k > k0
I, k = k0

Proof by inspection.

What about continuous time?
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Continuous Time-varying Linear Systems

ẋ(t) = A(t)x(t), x(t0) = x0

is equivalent to the integral equation

x(t) = x0 +
∫ t

t0
A(s)x(s)ds

Under weak conditions on A(t) one can show convergence of

xk+1(t) := x0 +
∫ t

t0
A(s)xk(s)ds

A(t) locally integrable (for instance bounded) is sufficient for existence
and uniqueness

From the integral equation it is easy to see that the solution x(t)
depends linearly on x(t0) (how?)
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Continuous Time Systems

For bounded A(t), the equation

ẋ(t) = A(t)x(t), x(t0) = x0

hence has a unique solution of the form

x(t) = Φ(t, t0)x0

The transition matrix can be written as the infinite sum

Φ(t, t0) = I +
∫ t

t0
A(σ1)dσ1

+
∫ t

t0
A(σ1)

∫ σ1

t0
A(σ2)dσ2dσ1

+
∫ t

t0
A(σ1)

∫ σ1

t0
A(σ2)

∫ σ2

t0
A(σ3)dσ3dσ2dσ1

. . .
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Example:Time-invariant System

For

ẋ = Ax(t), x(t0) = x0

the transition matrix is

Φ(t, t0)

= I +
∫ t

t0
Adσ1 +

∫ t

t0
A

∫ σ1

t0
Adσ2dσ1 + · · ·

= I +A(t− t0) +A2 (t− t0)2

2 +A3 (t− t0)3

6 + · · ·

= eA(t−t0)

so the solution is

x(t) = eA(t−t0)x0
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WARNING - Common Mistakes

If A(t) is time-varying, then in general

Φ(t, t0) 6= exp
{∫ t

t0
A(σ)dσ

}

Also beware that in general

e(A+B)t 6= eAteBt

Exception: If AB = BA then e(A+B)t = eAteBt holds (exercise)
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Calculation of exp(At) by Jordan Form

From Matrix Theory: Transformation P exist so A = PJP−1 where J
is a block diagonal matrix, each block being of the form

λI +N =


λ 1 0 . . .
0 λ 1 . . .

. . . 1
0 . . . 0 λ


Therefore eAt = PeJtP−1 where eJt is a block diagonal matrix, each
block having form

e(λI+N)t = eλteNt = eλt
∑
k

tk

k!N
k =


eλt teλt t2

2!e
λt . . .

0 eλt teλt
. . .

. . .
0 . . . 0 eλt
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Nice Example: Scalar Time-variation

Consider

ẋ = Aa(t)x(t)

The transition matrix is

Φ(t, t0) = I +A

∫ t

t0
a(σ1)dσ1 +A2

∫ t

t0
a(σ1)

∫ σ1

t0
a(σ2)dσ2dσ1 + · · ·

=
∞∑
k=0

1
k!A

k
[∫ t

t0
a(σ)dσ

]k
= exp

(
A

∫ t

t0
a(σ)dσ

)
Second equality is nontrivial.

(Recall Two Tank Example with time-varying flow q(t))
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More general case: Commutating A(t)

If

A(t)
∫ t

t0
A(σ)dσ =

∫ t

t0
A(σ)dσA(t)

then

Φ(t, t0) = exp
{∫ t

t0
A(σ)dσ

}

Special case: A(t)A(τ) = A(τ)A(t) for all t, τ
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Example

If A(t) = a1(t)A1 + a2(t)A2 where A1 and A2 commute then

Φ(t, t0) = exp
{∫ t

t0
a1(t)A1 + a2(t)A2dt

}
= exp

{∫ t

t0
a1(t)dtA1

}
exp

{∫ t

t0
a2(t)dtA2

}
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Characterization of Φ(t, t0)

The unique solution of the equation

d

dt
X(t) = A(t)X(t)

X(t0) = I

is X(t) = Φ(t, t0).

Proof. Let x(t) = X(t)x0. Then

ẋ(t) = d

dt
X(t)x0 = A(t)X(t)x0 = A(t)x(t)

so

x(t) = Φ(t, t0)x0

Hence Φ(t, t0)x0 = X(t)x0 for every x0, so Φ(t, t0) = X(t)
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Example

ẋ(t) =
[
1 cost
0 0

]
x(t)

x2(t) ≡ x2(τ)
ẋ1(t) = x1(t) + cost · x2(τ)

x1(t) = et−τx1(τ) +
∫ t

τ
et−σcosσdσ · x2(τ)

= et−τx1(τ) + 1
2
(
sint− cost− et−τ (sinτ − cosτ)

)
· x2(τ)

Φ(t, τ) =
[
et−τ 1

2
(
sint− cost− et−τ (sinτ − cosτ)

)
0 1

]

Sanity check: Φ(t, t) = I and d
dtΦ(t, τ)

∣∣∣
t=τ

=
[
1 cost
0 0

]
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Input-driven Continuous System

The equation

ẋ(t) = A(t)x(t) +B(t)u(t)
x(t0) = x0

has the unique solution

x(t) = Φ(t, t0)x0 +
∫ t

t0
Φ(t, σ)B(σ)u(σ)dσ

Proof: Differentiate!
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Properties of Φ(t, σ)

For any t, τ, σ, the transition matrix satisfies

Φ(t, τ) = Φ(t, σ)Φ(σ, τ) (semigroup property)
d

dt
Φ(t, σ) = A(t)Φ(t, σ)

d

dσ
Φ(t, σ) = −Φ(t, σ)A(σ)

Proof of first property: Let R(t) = Φ(t, σ)Φ(σ, τ). Then

d

dt
R(t) = A(t)R(t)

R(σ) = Φ(σ, τ)

so R(t) must be identical to Φ(t, τ)



LionSealWhite

Properties of Φ(t, σ)

Proof of third property:

Φ(σ + h, σ) = I + hA(σ) + o(h) (why?)

Hence, using first property, we have

Φ(t, σ) = Φ(t, σ + h)(I + hA(σ) + o(h))

from which we get

1
h

(Φ(t, σ + h)− Φ(t, σ)) = −Φ(t, σ + h)A(σ) + o(1)

from which the result follows as h→ 0

d

dσ
Φ(t, σ) = −Φ(t, σ)A(σ)
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Inversion

The transition matrix Φ(t, t0) is invertible for any t, t0 and

Φ(t, t0)−1 = Φ(t0, t)

Proof. By the composition rule

Φ(t, t0)Φ(t0, t) = Φ(t0, t)Φ(t, t0) = Φ(t0, t0) = I
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Warning: Stability is NOT determined by eigenvalues

Stability for a time-varying system

ẋ = A(t)x

can NOT be determined by the eigenvalues of A(t)

For stability, location of the eigenvalues

λ(A(t))

in the left half plane for all t is neither sufficient or necessary!

Try to figure out a counter-example yourself!

(There will be one in Lecture 2)


