Lecture - LQG Design

- Introduction
- The H_2-norm
- Formula for the optimal LQG controller
- Software, Examples
- Properties of the LQ and LQG controller
- Design tricks, how to tune the knobs
- What do the “technical conditions” mean?
- How to get integral action etc
- Loop Transfer Recovery (LTR)
- More Examples

For theory and more information, see PhD course on LQG

Reading tips: Ch 5 in Maciejowski
Linear Quadratic Gaussian Design

Process model

\[
\dot{x} = Ax + Bu + v \\
y = Cx + Du + w
\]

where \(v, w\) is white gaussian noise with mean zero

\[
E \begin{pmatrix} v(t) \\ w(t) \end{pmatrix} \begin{pmatrix} v(\tau) \\ w(\tau) \end{pmatrix}^T = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} \delta(t - \tau)
\]

Optimization criterion

\[
\min E \int_0^T \begin{pmatrix} x \\ u \end{pmatrix}^T \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix} dt
\]
Short on Stochastics

\[
\begin{align*}
\dot{x} &= Ax + v \\
y &= Cx + e
\end{align*}
\]

\(v\) white noise, \(\mathbb{E}v(t)v^T(t - \tau) = R_1\delta(\tau)\)
\(e\) white noise, \(\mathbb{E}e(t)e^T(t - \tau) = R_2\delta(\tau)\)

State covariance

\[
\mathbb{E}x(t)x^T(t) = R(t), \quad \dot{R} = AR + RA^T + R_1
\]

Kalman filter, \(\dot{x} = A\hat{x} + L(y - C\hat{x})\)

\[
\tilde{x} = x - \hat{x}, \quad \mathbb{E}\tilde{x}(t)\tilde{x}^T(t) = P(t)
\]

\[
\dot{P} = AP + PA^T + R_1 - PC^TR_2^{-1}CP, \quad L = PC^TR_2^{-1}
\]
Nice structure of the optimal controller: \(u = -K\hat{x} \)

Linear feedback combined with state estimation

Certainty equivalence principle
In the late 50s and early 60s computers were starting to be used to find “optimal” controllers.

Classical Reference: Newton, Gould, Kaiser (1957)

Wiener-Kolmogorov

Kalman-Bucy

Bellman, Wonham, Willems, Andersson, Åström, Kucera and many others
Why so popular?

Gives “optimal” controller

Automized design method. Works for MIMO.

Nice formulas for the optimal controller, reasonable computational effort

Gives absolute scale of merit - know limits of performance

Used for space program, aircraft design - Good models often available

LQ control give good robustness margins (with \(Q_{12} = 0 \))

- \([1/2, \infty]\)-gain margin
- 60 degree phase margin
Introduction

The H_2-norm

Formula for the optimal LQG controller

Software, Examples

Properties of the LQ and LQG controller

Design tricks, how to tune the knobs

What do the “technical conditions” mean?

How to get integral action etc

Loop Transfer Recovery (LTR)

More Examples
LQG is optimizing the H_2 norm

Consider the system

\[
\begin{align*}
Y &= G(s)U \\
y &= g \ast u \\
\dot{x} &= Ax + Bu \\
y &= Cx + (Du)
\end{align*}
\]

The L_2-norm (LQG-norm) is defined as

\[
\left\| G \right\|_2^2 = \sum_i \sum_j \int_{-\infty}^{\infty} |G_{ij}(j\omega)|^2 d\omega / 2\pi = \\
= \int_{-\infty}^{\infty} \text{trace} \left\{ G^*(j\omega)G(j\omega) \right\} d\omega / 2\pi
\]

H_2: Equals L_2-norm if G asymptotically stable, equals ∞ otherwise
H_2-norm as noise power gain

u: stationary white noise, mean zero

\[E(u(\tau_1)u(\tau_2)^T) = \delta(\tau_1 - \tau_2)I \]

\[S_u(\omega) = 1, \forall \omega \]

then $\text{Pow}(y) = E(y^Ty) = \|G\|_2^2$.

"Amplification of noise power"
Proof

\[E(\text{tr } yy^T) = \text{tr } \int S_y(\omega) d\omega / 2\pi = \]
\[= \int \text{tr } G^*(j\omega) S_u(\omega) G(j\omega) d\omega / 2\pi \]
\[= \|G\|_2^2 \]
Another interpretation of the H_2-norm

By Parseval’s formula we have

\[\| G \|_2^2 = \sum_i \sum_j \int_{-\infty}^{\infty} |g_{ji}(t)|^2 dt \]

Hence the H_2-norm can also be interpreted as “energy in impulse responses”:

\[\| G \|_2^2 = \sum_{i=1}^{m} \int_{0}^{\infty} |g_{.:i}(t)|^2 dt \]
How to compute the H_2 norm

1) `norm(sys)` in Matlab

2) If $G(s) = C(sI - A)^{-1}B$ then

$$\|G\|_2^2 = \text{trace} \left(CPC^T \right) = \text{trace} \left(B^T S B \right)$$

where P is the unique solution to the Lyapunov equation

$$AP + PA^T + BB^T = 0$$

and S solves

$$SA + A^T S + C^T C = 0$$

3) Residue calculus

$$\|G\|_2^2 = \sum_{i,j} \frac{1}{2\pi i} \oint G_{ij}(-s)^T G_{ij}(s) ds$$

4) Recursive formulas ala Åström-Jury-Schur
Lecture - LQG Design

- Introduction
- The H_2-norm
- Formula for the optimal LQG controller
- Software, Examples
- Properties of the LQ and LQG controller
- Design tricks, how to tune the knobs
- What do the “technical conditions” mean?
- How to get integral action etc
- Loop Transfer Recovery (LTR)
- More Examples
A unified framework

\[u = \text{Control inputs} \]
\[y = \text{Measured outputs} \]
\[w = \text{Exogenous inputs} = \begin{cases} \text{Fixed commands} \\ \text{Unknown commands} \\ \text{Disturbances} \\ \text{Noise . . .} \end{cases} \]
\[z = \text{Regulated outputs} = \begin{cases} \text{Tracking errors} \\ \text{Control inputs} \\ \text{Measured outputs} \\ \text{States . . .} \end{cases} \]
The H_2 Problem

Closed Loop

\[u = K(s)y \]
\[z = G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21}w = T_{zw}w \]

The H_2 problem:

Find $K(s)$ such that the closed loop is stable and

\[\min_{K(s)} \|T_{zw}\|_2 \]

is obtained.
The Optimal Controller

\[\dot{x} = Ax + B_1w + B_2u \]
\[z = C_1x + D_{12}u \]
\[y = C_2x + D_{21}w + D_{22}u \]

Under some technical conditions the optimal controller is

\[u = -K\hat{x} \]
\[\dot{\hat{x}} = A\hat{x} + B_2u + L(y - C_2\hat{x} - D_{22}u) \]
\[K = (D_{12}^TD_{12})^{-1}(D_{12}^TC_1 + B_2^TS) \]
\[L = (B_1D_{21}^T + PC_2^T)(D_{21}D_{21}^T)^{-1} \]

where \(P \geq 0 \) and \(S \geq 0 \) satisfy

\[0 = SA + A^TS + C_1^TC_1 - KT D_{12}^TD_{12}K \]
\[0 = AP + PA^T + B_1B_1^T - LD_{21}D_{21}^TL^T \]
\[A - B_2K, \quad A - LC_2 \text{ stable} \]
The Optimal Controller

\[u = -K(sI - A + B_2K + LC_2 - LD_{22}K)^{-1}Ly \]

Controller has same order as process

(How to introduce reference signals later)
1) \([A, B_2]\) stabilizable

2) \([C_2, A]\) detectable

3) “No zeros on imaginary axis” \(u \rightarrow z\)

\[
\text{rank} \begin{pmatrix}
 j\omega I - A & -B_2 \\
 C_1 & D_{12}
\end{pmatrix} = n + m \quad \forall \omega
\]

and \(D_{12}\) has full column rank (no free control)

4) “No zeros on imaginary axis” \(w \rightarrow y\)

\[
\text{rank} \begin{pmatrix}
 j\omega I - A & -B_1 \\
 C_2 & D_{21}
\end{pmatrix} = n + p \quad \forall \omega
\]

and \(D_{21}\) has full row rank (no noise-free measurements)
Alternative formulation

Weight matrices

\[
\begin{pmatrix}
Q_{11} & Q_{12} \\
Q_{12}^T & Q_{22}
\end{pmatrix}
= \begin{pmatrix}
C_1^T \\
D_{12}^T
\end{pmatrix}
\begin{pmatrix}
C_1 & D_{12} \\
B_1 & D_{21}
\end{pmatrix}
\begin{pmatrix}
R_{11} & R_{12} \\
R_{12}^T & R_{22}
\end{pmatrix}
= \begin{pmatrix}
B_1^T \\
D_{21}^T
\end{pmatrix}
\begin{pmatrix}
B_1 & D_{21}
\end{pmatrix}
\]

If \(Q_{12} = 0 \) then the notation \(Q_1 \) and \(Q_2 \) is sometimes used instead, similar for \(R \)
Lecture - LQG Design

- Introduction
- The H_2-norm
- Formula for the optimal LQG controller
- Software, Examples
- Properties of the LQ and LQG controller
- Design tricks, how to tune the knobs
- What do the “technical conditions” mean?
- How to get integral action etc
- Loop Transfer Recovery (LTR)
- More Examples
Matlab - Control system toolbox

lqr, dlqr - Linear-quadratic (LQ) state-feedback regulator
lqry - LQ regulator with output weighting
lqrd - Discrete LQ regulator for continuous plant
kalman - Kalman estimator
kalmd - Discrete Kalman estimator for continuous plant
lqgreg - LQG regulator from LQ gain & Kalman estimator
LQR Linear-quadratic regulator design for state space systems.

\[[K, S, E] = \text{LQR}(\text{SYS}, Q, R, N) \]
calculates the optimal gain matrix \(K \) such that:

* For a continuous-time state-space model \(\text{SYS} \), the state-feedback law \(u = -Kx \) minimizes the cost function

\[
J = \text{Integral } \{x'Qx + u'Ru + 2*x'Nu\} \text{ dt}
\]

subject to the system dynamics \(\frac{dx}{dt} = Ax + Bu \).
KALMAN Continuous- or discrete-time Kalman estimator.

\[[\text{KEST}, L, P] = \text{KALMAN}(\text{SYS}, QN, RN, NN) \]
designs a Kalman estimator \text{KEST} for the continuous- or discrete-time plant with state-space model \text{SYS}. For a continuous-time model

\[
\begin{align*}
x &= Ax + Bu + Gw \quad \{\text{State equation}\} \\
y &= Cx + Du + Hw + v \quad \{\text{Measurements}\}
\end{align*}
\]

with known inputs \(u \), process noise \(w \), measurement noise \(v \), and noise covariances

\[
E\{ww'\} = QN, \quad E\{vv'\} = RN, \quad E\{wv'\} = NN,
\]

By default, \text{SYS} is the state-space model \(SS(A, [B G], C, [D H]) \).
LQGREG Form linear-quadratic-Gaussian (LQG) regulator

\[
\text{RLQG} = \text{LQGREG}(\text{KEST}, K) \text{ produces an LQG regulator by connecting the Kalman estimator } \text{KEST} \text{ designed with } \text{KALMAN}
\]

\[
\text{and the state-feedback gain } K \text{ designed with (D)LQR or LQRY:}
\]

\[
\begin{array}{c}
+----------------------------+ \\
| u | \\
| +------| \\
+----> | x_e +-----| \\
| KEST | ----> | -K | -----> u \\
| y ----->| \\
+------+
\end{array}
\]

The resulting regulator RLQG has input \(y \) and generates the commands \(u = -K x_e \) where \(x_e \) is the Kalman state estimate based on the measurements \(y \). This regulator should be connected to the plant using positive feedback.
Example

Consider the following system from the pole placement lecture

\[G(s) = \frac{1 + 0.5s}{s^2} \]

The following controller is suggested in Åström-Murray “Feedback Systems” p. 363

\[C(s) = 3628 \frac{s + 11.02}{(s + 2)(s + 78.28)} \]

To construct an LQG controller we write the system on state space form

\[\dot{x} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u + Gw \]

\[y = \begin{pmatrix} 0.5 & 1 \end{pmatrix} x + Hw + v \]
Example - slow process zero

\[
A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix};
B = \begin{bmatrix} 1 \\ 0 \end{bmatrix};
C = \begin{bmatrix} 0.5 & 1 \end{bmatrix};
D = 0;
\]
\[
sys = \text{ss}(A,B,C,D);
Q = \text{diag}([0 \ 1]);
R = 1e-5;
[k,s,e] = \text{lqr}(A,B,Q,R);
G = B;
H = 0;
QN = 1;
RN = 1e-5;
syse = \text{ss}(A,[B \ G],C,[D \ H]);
[kest,l,p] = \text{kalman}(syse,QN,RN);
rlqg = \text{lqgreg}(kest,k);
PC = -rlqg*sys;\]
\[Q_{11} = \text{diag}([0 \ 1]), \quad Q_{22} = 10^{-5}, \quad R_{11} = \text{diag}([0 \ 1]), \quad R_{22} = 10^{-5} \]

Larger high-frequency gain for LQG (blue) than default controller (red)
Increased meas noise $R_{22} := 7 \cdot 10^{-5}$ and $Q_{22} = 0.7 \cdot 10^{-5}$

LQG now gives same controller as was obtained by pole-placement design earlier
Obsolete LQG Software - use at your own risk

Matlab - robust control toolbox and mutools

h2lqg - continuous time H_2 synthesis.
dh2lqg - discrete time H_2 synthesis.
normh2 - calculate H_2 norm.
lqg - LQG optimal control synthesis.
ltru - LQG loop transfer recovery.
ltry - LQG loop transfer recovery.

h2syn - H_2 control design

Department “LQGBOX” TFRT-7575

oldboxes (this might not work anymore)

\[[K,S] = \text{lqrc}(A,B,Q1,Q2,Q12) \]
\[[L,P] = \text{lqec}(A,C,R1,R2,R12) \]
kr = \text{refc}(A,B,C,D,K)
\[[Ac,By,Byr,Cc,Dy,Dyr] = \text{lqg}(A,B,C,D,K,kr,L) \]
lqed, lqrd, refd, lqgd in discrete time
Lecture - LQG Design

- Introduction
- The H_2-norm
- Formula for the optimal LQG controller
- Software, Examples
- Properties of the LQ and LQG controller
- Design tricks, how to tune the knobs
- What do the “technical conditions” mean?
- How to get integral action etc
- Loop Transfer Recovery (LTR)
- More Examples
As we will see, LQ-control $u = -Lx$ automatically gives amazing robustness properties: Infinite gain margin and 60 degrees phase margin

(Warning: Only if one uses block diagonal weights !)

Properties of LQ control

When all states can be measured, we have nice robustness properties

Loop Gain: \(K(sI - A)^{-1}B \)
Return Difference: \(I + K(sI - A)^{-1}B \)

Compare with LQG (if \(D = 0 \))

Loop Gain: \(C(sI - A)^{-1}BK(sI - A + BK + LC)^{-1}L \)

(remark on notation: \(B = B_2 \) on the LQ slides below)
Return Difference Formula

From Riccati equation (nice matrix exercise):

\[
M^T(-s)M(s) = \left(I + K(-sI - A^T)^{-1}B \right)^T D_{12}^T D_{12} \left(I + K(sI - A)^{-1}B \right)
\]

where \(M(s) = D_{12} + C_1(sI - A)^{-1}B \)

If no crossterms:

If \(C_1^T C_1 = Q_1, C_1^T D_{12} = 0 \) and \(D_{12}^T D_{12} = Q_2 \)

\[
Q_2 + B^T(-sI - A^T)^{-1}Q_1(sI - A)^{-1}B = \left(I + K(-sI - A^T)^{-1}B \right)^T Q_2 \left(I + K(sI - A)^{-1}B \right)
\]

This is the return difference formula for LQ
Consequences of RDF

\[(I + K(-sI - A^T)^{-1}B)^T Q_2(I + K(sI - A)^{-1}B) \geq Q_2\]

For scalar system this becomes

\[q_2|1 + K(sI - A)^{-1}B|^2 \geq q_2\]

therefore

\[|1 + K(sI - A)^{-1}B| \geq 1\]

\[M_s \leq 1\]
Disturbance rejection performance improved for all frequencies
Gain Margin \([1/2, \infty]\), Phase Margin \(\geq 60\) degrees.
Circle criterion: Stability under feedback with any nonlinear time-varying input gain with slopes in \((1/2, \infty)\).
Requirements: No cross-terms, \(Q_{12} = 0\). All states measurable.

TAT: Why isn’t this a violation of Bode’s integral formula?
LQ Gain Margin, MIMO

With

\[S_i(j\omega) = \left(1 + K(sI - A)^{-1}B\right)^{-1} \]

\[\tilde{\sigma}(Q_2^{1/2} S_i(j\omega) Q_2^{-1/2}) \leq 1 \]

If \(Q_2 \) diagonal this gives nice MIMO gain/phase margins, see LQG course.
If $Q_{12} = 0$ then for large ω

$$K(j\omega I - A)^{-1}B \sim KB/\omega = Q_2^{-1}B^T S B/\omega$$

LQ-controller gives loop gain with roll-off 1 (unless $K = 0$)

Same conclusion for

$$K(j\omega I - A + BL)^{-1}B \sim KB/\omega = Q_2^{-1}B^T S B/\omega$$

Intuition for the future: If the open loop system has roll-off larger than 1, then if one forces the LQG loop gain to approach the LQ loop gain, the LQG controller will have large high-frequency gain
Robustness of LQG

Kalman filter producing \hat{x} has similar (dual) robustness properties

Since the LQG controller combines two robust parts: LQ control and Kalman filtering, it was for a long time hoped that robustness margins for the LQG controller would eventually be found

But, output feedback $u = -L\hat{x}$ was surprisingly (?) found to have no automatic guarantees for robustness

This was a disappointment, especially for people hoping to automate design

Turned attention towards robust control, e.g. H_∞ in the 80s
A new kid on the block

Honeywell Interoffice Correspondence

Date: August 23, 1977
To: C. A. Harvey
From: J. C. Doyle
Location: S&RC, Research
Subject: "Guaranteed Margins for LQG Regulators"

cc: L. Q. Gaussian
J. A. Hauge
A. P. Kizilos
A. F. Konar
E. E. Yore
N. R. Zagalsky
Systems and Control Technology

ABSTRACT

There aren't any.

All engineers who have been using LQG methodology may pick up their Nichols charts from the supply room.
\[
\begin{align*}
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{pmatrix} &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u + \begin{pmatrix} 1 \\ 1 \end{pmatrix} v \\
y &= \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \sqrt{\sigma} w \\
\min E[(x_1 + x_2)^2 + \rho u^2]
\end{align*}
\]
\[A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \]
\[B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \]
\[B_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \]
\[C_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}; \]
\[C_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}; \]
\[G = B_1; \]
\[H = 0 \cdot C_2 \cdot B_1; \]
sys = \text{ss}(A,B_2,C_2,0);
\[\text{syse} = \text{ss}(A,[B_2 \ G],C_2,[0 \ H]); \]
\[\rho = 1; \sigma = 1; \]
\[\left[K, S, E \right] = \text{lqr}(A,B_2,C_1' \cdot C_1, \rho); \]
\[\left[\text{Kest}, L, P \right] = \text{kalman}(\text{syse}, 1, \sigma); \]
\[\text{rlqg} = -\text{lqgreg}(\text{Kest}, K); \]
\[\text{loopgain} = \text{sys} \cdot \text{rlqg}; \]
Doyle’s counter example

Loop gain with $\rho = \sigma = 1$ (blue), 0.01 (red), 0.0001 (black)

Infinitly small gain and phase margins when ρ and σ become small
The symmetric root locus

Assume $Q_{11} = C^T C$, $Q_{12} = 0$, $Q_{22} = \rho I$, then for SISO systems

$$G(s) = C(sI - A)^{-1}B =: \frac{B(s)}{A(s)}$$

$$I + H(s) := I + K(sI - A)^{-1}B =: \frac{P(s)}{A(s)}$$

Closed loop characteristic equation $P(s) = 0$ (TAT: Why?)

Riccati equation gives (return difference formula)

$$Q_2 + G(-s)G(s) = (I + H(-s))Q_2(I + H(s))$$

$$\rho A(-s)A(s) + B(-s)B(s) = \rho P(-s)P(s)$$

symlocc, symlocd in matlab (oldboxes)
Symmetric root loci for $G(s) = \frac{s+10}{s^2(s^2+0.1s+1)}$ and $G(s)/s$.

```matlab
oldboxes; robotdata
[b,a]=tfdata(sys2); b=b{1}; a=a{1};
locus=symlocc(b,a,1e-6,1e10,0.003);
plot(locus(:,2:end),'b','Linewidth',2)
```
Cheap control $\rho \to 0$

$$\rho A(-s)A(s) + B(-s)B(s) = \rho P(-s)P(s)$$

Eigenvalues of closed loop tend to stable zeros of $B(-s)B(s)$ and the rest tend to ∞ as stable roots of

$$s^{2d} = \text{const} \cdot \rho$$
An interesting formula - cheap control

\[
\min \int_0^\infty |y(t) - 1|^2 dt = 2 \sum_{\text{Re} z_j > 0} \text{Re} \frac{1}{z_j}
\]

where the sum is over all non-minimum phase zeros.

Reference: Qui-Davison, Automatica 1993 pp. 337-349

TAT: Where have you seen something similar before?
Expensive control $\rho \to \infty$

$$\rho A(-s)A(s) + B(-s)B(s) = \rho P(-s)P(s)$$

Eigenvalues of closed loop tend to stable zeros of $A(-s)A(s)$

Example

$$\min u^2, \quad \dot{x} = x + u$$

$A(s) = s - 1$ unstable.

Optimal controller $u = -2x$ gives

$$\dot{x} = -x$$

$P(s) = s + 1$
Consider the system

\[
\dot{x} = Ax + B(u + w), \quad u = -Kx
\]

where \(w\) is unitary white noise.

The minimal control effort needed to stabilize the system is

\[
\min E|u|^2 = 2 \sum_{\text{Re} p > 0} \text{Re} p
\]

where the sum is over all unstable poles (exercise).

The optimal closed loop system \(A - BK\) has eigenvalues in the open loop stable poles and the mirror image of the open loop unstable poles.

“The cheapest way to stabilize an unstable pole is to mirror it”
Introduction
- The H_2-norm
- Formula for the optimal LQG controller
- Software, Examples
- Properties of the LQ and LQG controller
- Design tricks, how to tune the knobs
- What do the “technical conditions” mean?
- How to get integral action etc
- Loop Transfer Recovery (LTR)
- More Examples
How to tune the weights

Having a state-space realization where the states have a physical meaning aids the intuition.

It is helpful to choose scalings so that all interesting signal levels are roughly the same size.

Q_1 incr, or Q_2 decr. gives faster control.

R_1 incr, or R_2 decr. gives faster observer.
(Bryson’s) rule of thumb

\[Q_1 = \text{diag}(\alpha_1, \ldots, \alpha_n) \]
\[Q_2 = \text{diag}(\beta_1, \ldots, \beta_m) \]

Let \(\alpha_i \sim (x_i)^{-2} \) and \(\beta_i \sim (u_i)^{-2} \) where \(x_i \) and \(u_i \) denote allowable sizes on state \(i \) and input \(i \)

Similar intuition for the noise weights \(R_1 \) and \(R_2 \).

Note that multiplying all elements of \(Q \) by the same factor does not change the controller. Similar for the \(R \) matrices.
Introducing an extra punishment of

\[(\dot{x}_i + \alpha x_i)^2\]

should move the system closer to \(\dot{x}_i = -\alpha x_i\).

Gives cross-terms
Another tuning trick

$$G(s) = \frac{1}{(s + 1)(s^2 + 1)}$$

Want to increase damping without moving the pole in $s = -1$.

This can be achieved by weights that are zero on the eigendirections to $s = -1$.
\[
Q_1 = q_i q_i^T, \quad q_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad q_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}
\]
Example Aircraft - wind gust turbulence

Taken from Anderson-Moore Optimal Control Linear Quadratic Methods, pp.222-224

6 state model of aircraft subject to wind gust turbulence
\[\dot{x} = Ax + Bu + B_v v, \quad y = Cx + w \]

Two outputs \(y_f \) and \(y_a \) forward and aft accelerations, one input

Open loop resonances at 1.6 and 21 rad/s

\[
A = \begin{pmatrix}
-3 \cdot 10^{-8} & & & & & 0 \\
-7 \cdot 10^{-3} & -0.12 & 1.57 \\
-1.57 & -0.12 & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
\end{pmatrix}
\]

See home page for full model
Open Loop

Turbulence without a controller

\[y_f \text{ (blue) and } y_a \text{ (green)} \]
Design 1

\[\min E[y_f^2 + y_a^2 + 0.2u^2] \]

Want to increase damping of resonance at 1.5 rad/s

Penalise \(x_3 \) and \(x_4 \) more
Big improvement at 1.5 rad/s

But is Andersson-Moore’s Design 2 any good?
Design 2 has much more control effort around 1.5 rad/s

But that’s perhaps ok. But how about robustness?
Andersson-Moore’s design 2 has very bad robustness margins, e.g. $M_s \sim M_t \sim 20$.

A change in process gain of 5 % gives an unstable loop.

Conclusion: Even the masters can make a bad design with LQG. No guarantees for robustness.
Lecture - LQG Design

- Introduction
- The H_2-norm
- Formula for the optimal LQG controller
- Software, Examples
- Properties of the LQ and LQG controller
- Design tricks, how to tune the knobs

Next lecture

- What do the “technical conditions” mean?
- How to get integral action etc
- Loop Transfer Recovery (LTR)
- More Examples