Exercise session 5

 H_{∞} Optimization Problem. Frequency Domain Approach. Algebraic Riccati Equations. State Space Solution.

Reading Assignment

Read [Zhou] Ch. 12,14. Optional reading:

- Frequency Domain [Francis]
- ARE and State Space [Zhou,Doyle,Glover]
- Doyle J., Glover K., Khargonekar P., Francis B., State Space Solution to Standard H² and H[∞] Control Problem, IEEE Trans. on AC 34 (1989) 831– 847.

Exercises

- **E5.1** [Zhou] 14.5
- E5.2 [Zhou] 14.6
- E5.3 [Zhou] 14.7
- E5.4 [Zhou] 14.11
- **E5.5** Exercise 5.4 continued: (c-v) Using μ -synthesis technique design a stabilizing controller K which guarantees RP taking into account the structure of Δ .

Hand-In problems:

- **H5.1** [Zhou] 14.3. Plot the Bode diagram of the closed-loop transfer function for both problems and compare them. Conclusion?
- **H5.2** For each of the following systems

$$G_1 = \frac{1}{(s+1)^3},$$

$$G_2 = \frac{1}{(s^2+0.14s+1)(s+1)^3},$$

$$G_3 = \frac{1}{(s^2-0.14s+1)(s+1)},$$

design a H_{∞} controller that minimizes the cost function

$$\left\| \left(\begin{matrix} W_s S \\ W_u KS \end{matrix} \right) \right\|_{\infty}$$

where

$$W_s = rac{s/M + \omega_B}{s + \omega_B A}$$

with M = 2, $\omega_B = 5$ and A = 0.01. The constant weight W_u should be adjusted to make the cost function smaller than one.

For each case, draw the following plots:

- Sensitivity to show that you meet specs.
- The Nyquist/Nichols plot to check stability.
- Bode graph of G_i , K and $L = G_i K$. Clearly label each curve and identify the gain/phase cross-over point.
- The root locus obtained by using a controller αK where $\alpha \in [0, 2]$.
- The step response of the closed-loop system.