
Lecture 3

◮ Unstructured Uncertainty Models
◮ Small Gain Theorem and Robust Stability
◮ Robust Performance
◮ Linear Fractional Transformations

Introduction
Recall that the purpose of robust control is that the closed loop
performance should remain acceptable in spite of variations in
the plant.

Methods to verify that a performance specification holds for all
plants in a given set will be devoloped in this lecture and the
next one.

P0

P∆

Four kinds of specifications

Nominal stability
The closed loop is stable for the nominal plant P0

Nominal performance
The closed loop specifications hold for the nominal plant P0

Robust stability
The closed loop is stable for all plants in the given set P∆

Robust performance
The closed loop specifications hold for all plants in P∆

Basic Uncertainty Models

Let D be a set of all allowable ∆’s.

Additive uncertainty model: P∆ = P0 + ∆, ∆ ∈D .
Multiplicative uncertainty model: P∆ = (I + ∆)P0, ∆ ∈D .
Feedback uncertainty model: P∆ = P0(I + ∆P0)

−1, ∆ ∈D .
Coprime factor uncertainty model:

Let P0 = N M−1, M , N ∈ RH∞ and

P∆ = (N + ∆N)(M + ∆M )
−1,


∆N

∆M


 ∈D .

Miniproblem

Draw block diagrams for each of the previous uncertainty
models!

◮ Very often
D = {W1∆W2 p q∆q∞ ≤ 1}

where W1 and W2 are given stable functions.
◮ The functions Wi provide the uncertainty profile. The main

purpose of ∆ is to account for phase uncertainty and to act
as a scaling factor.

◮ Typically W is an increasing function of ω .
◮ The coprime factor uncertainty model is the most general

form of all above.
◮ Construction of uncertainty models is a nontrivial task

Example

Let
P(s) =

1
s2 e−τ s

where τ is known only to the extent that τ ∈ [0, 0.1].

Let the nominal plant be P0(s) = 1
s2 and

P ∈ P∆ = {(1+ W∆)P0 p q∆q∞ ≤ 1}.

The weight should be chosen so that
∣∣∣∣

P( jω )
P0( jω )

− 1
∣∣∣∣ ≤ pW( jω )p, ∀ω ∈ R,τ ∈ [0, 0.1].

So choose pW( jω )p ≥ pe− jτω − 1p as tight as possible to reduce
conservatism.

A suitable first order weight is W(s) = 0.21s/(0.1s+ 1)

The Small Gain Theorem

Suppose M ∈ RHm$m
∞ . Then the closed loop system (M , ∆) is

internally stable for all

∆ ∈ B RH∞ := {∆ ∈ RHm$m
∞ p q∆q∞ ≤ 1}

if and only if qMq∞ < 1.

Proof: The internal stability of (M , ∆) is


 I −∆
−M I



−1

∈ RH∞.

Since M , ∆ ∈ RH∞ it is equivalent to (I − M∆)−1 ∈ RH∞

([Zhou,Corollary 5.4]).

Thus we have to prove that qMq∞ < 1 if and only if

(I − M∆)−1 ∈ RH∞, ∀∆ ∈ B RH∞
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Proof of Sufficiency

Let qMq∞ < 1 and ∆ ∈ B RH∞. Consider the Neumann series
decomposition (I − M∆)−1 =

∑+∞
n=0(M∆)n.

Then (I − M∆)−1 ∈ RH∞ since M∆ ∈ RH∞ and

q(I − M∆)−1q∞ ≤
+∞∑

n=0

qM∆qn
∞

≤
+∞∑

n=0

qMqn
∞

= (1− qMq∞)−1 < +∞.

Proof of Necessity

Assume that qM( jω )q = σ ≥ 1 for some ω 0 ∈ [0,∞]. This
means existence of singular vectors ū, v̄ ∈ C with pūp = pv̄p = 1
and M( jω )v̄ = σ ū. Define

∆(s) =
[
pv̄1p

α 1−s
α 1+s . . . pv̄np

α m−s
α m+s

]T [
pū1p

β 1−s
β 1+s . . . pūnp

β m−s
β m+s

] 1
σ

where α j and β k are chosen such that ∆(iω 0) = v̄ū∗ 1
σ . Then

∆ ∈ RHm$m
∞ , q∆q = σ−1 ≤ 1 and

det[I − M( jω 0)∆(iω 0)] = det[I − M( jω 0)v̄ū∗/σ ]

= 1−
ū∗M( jω 0)v̄

σ
= 0.

Hence the closed loop system (M , ∆) is either not well-posed
(if ω 0 = ∞) or unstable (if ω 0 < ∞).

Robust Stability under Unstructured Uncertainty

Theorem: Let Wi ∈ RH∞, P∆ = P0 + W1∆W2 for ∆ ∈ RH∞

and K be a stabilizing controller for P0. Then K is robustly
stabilizing for all ∆ ∈ B RH∞ is and only if

qW2 K SoW1q∞ < 1.

Proof: Introduce

T∆ =


 I −K
−P∆ I


 = T0 −


 0

W1


 ∆


W2 0




= T0

(
I − T−1

0


 0

W1


 ∆


W2 0



)

= T0Φ

Assuming nominal stability, i.e. T−1
0 ∈ RH∞, robust stability

holds if and only if Φ−1 ∈ RH∞ for all ∆ ∈ B RH∞

Note that Φ ∈ RH∞, so Φ−1 ∈ RH∞ iff det Φ has a stable
inverse. The determinant identity in [Zhou,p. 14] yields

det Φ = det
(

I −

W2 0


T−1

0


 0

W1


 ∆

)

Hence robust stability is equivalent to the condition that

(
I −


W2 0


T−1

0


 0

W1


 ∆

)−1

∈ RH∞

which in turn by small gain theorem is equivalent to
∥∥∥∥

W2 0


T−1

0


 0

W1



∥∥∥∥
∞

< 1

The desired condition follows as

T−1
0 =


 Si K So

PSi So





W2 0


T−1

0


 0

W1


 = W2 K SoW1

Uncertainty Model (q∆q ≤ 1) Robust stability test
(I + W1∆W2)P qW2ToW1q∞ < 1
P(I + W1∆W2) qW2TiW1q∞ < 1
(I + W1∆W2)

−1P qW2SoW1q∞ < 1
P(I + W1∆W2)

−1 qW2SiW1q∞ < 1
P+ W1∆W2 qW2 K SoW1q∞ < 1

P(I + W1∆W2P)−1 qW2SoPW1q∞ < 1
(M̃ + ∆̃M )

−1(Ñ + ∆̃N)
∆ = [∆̃N ∆̃M ]

∥∥∥∥

K

I


 SoM̃−1

∥∥∥∥
∞

< 1

(N + ∆N)(M + ∆M )
−1

∆ = [∆N ∆M ]

∥∥∥M−1Si


K I



∥∥∥
∞
< 1

Robust Performance for Unstructured Uncertainty

❢ WS ✲❄✲ ✲(1+ ∆WT)P✲K✲ ✲

✻−

w
e❢

The closed loop map from w to e is Tew = WS(1+ P∆ K )−1,
where P∆ = (1+ ∆WT)P. Given robust stability, a robust
performance specification is qTewq∞ < 1 for all ∆ ∈ B RH∞.
This is equivalent to stability of the following diagram for
∆, ∆p ∈ B RH∞:

ed

w
f❢

❢
✲ ✲

✻
K WS

WT ∆

✲

∆p✛✲

❄
P

✲

✲

✛

−

❢

Equivalent Diagrams for Robust Stability

ed

w
f❢

❢
✲ ✲

✻
K WS

WT ∆

✲

∆p✛✲

❄
P

✲

✲

✛

−

❢

[
WS(1+ PK )−1

WT PK (1+ PK )−1

]
✲

✛[
∆p ∆

]
[

e
f

]
d

Condition for Robust Performance

[
WS(1+ PK )−1

WT PK (1+ PK )−1

]
✲

✛[
∆p ∆

]
[

e
f

]
d

Hence a small gain argument gives that the robust performance
specification

qTewq∞ < 1 for all ∆ ∈ B RH∞

is equivalent to the condition

max
ω

[
pWS(1+ PK )−1p + pWT PK (1+ PK )−1p

]
< 1
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Linear Fraction Transformation

In complex analysis a linear fractional transformation (LFT) is a
function in the form F(s) = a+bs

c+ds . If c ,= 0 then equivalently
F(s) = α + β s(1− γ s)−1.

Definition: For a complex matrix M =


M11 M12

M21 M22


 and other

complex matrices ∆l, ∆u of appropriate size define a lower LFT
with respect to ∆l as

F l(M , ∆l) = M11 + M12∆l(I − M22∆l)
−1M21

and an upper LFT with respect to ∆u as

Fu(M , ∆u) = M22 + M21∆u(I − M11∆u)
−1M12

provided the inverse matrices exist.

Motivation
Consider closed loop systems


z1

y1


 =


M11 M12

M21 M22





w1

u1


 u1 = ∆l y1

and

y2

z2


 =


M11 M12

M21 M22





u2

w2


 u2 = ∆uy2

Then
Tz1w1 = F l(M , ∆l), Tz2w2 = Fu(M , ∆u).

Remark: In what follows we shall often use just LFT without
distinguishing it to be lower or upper. It will be clear from
context. Moreover Fu(N, ∆) = F l(M , ∆) where

N =


M22 M21

M12 M11


 .

Usage of LFT

◮ LFT is a useful way to standardize block diagram, that is to
bring it to some canonical form.

◮ Systems with parametric uncertainties, i.e. with unknown
coefficients in state space models can be represented as
an LFT with respect to uncertain parameters (see
examples in [Zhou]).

◮ Basic principle: use LFT to “pull out all uncertainties” which
can appear in different points of a block diagram and to
combine them in one uncertainty.

What have we learned today?

◮ Basic uncertainty models: additive, multiplicative, coprime
factor etc.

◮ Robust stability — stability for all systems in a family
closed by a single controller.

◮ Small Gain Theorem as a main tool for robust stability
under unstructured uncertainty. Robust stability is
equivalent to some H∞ nominal performance.

◮ Conditions for robust performance are usually much harder
to obtain explicitly.

◮ Linear Fractional Transformation as a standard way to
represent an uncertain system combining all uncertainties
in one.
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