

So choose $|W(j\omega)| \geq |e^{-j\tau\omega}-1|$ as tight as possible to reduce conservatism.

A suitable first order weight is W(s) = 0.21s/(0.1s + 1)

Thus we have to prove that $\|M\|_{\infty} < 1$ if and only if

 $(I - M\Delta)^{-1} \in RH_{\infty}, \quad \forall \Delta \in \mathcal{B}RH_{\infty}$

Proof of Sufficiency

Let $||M||_{\infty} < 1$ and $\Delta \in \mathcal{B}RH_{\infty}$. Consider the Neumann series decomposition $(I - M\Delta)^{-1} = \sum_{n=0}^{+\infty} (M\Delta)^n$.

Then $(I-M\Delta)^{-1}\in RH_\infty$ since $M\Delta\in RH_\infty$ and

$$\begin{split} \|(I - M\Delta)^{-1}\|_{\infty} &\leq \sum_{n=0}^{+\infty} \|M\Delta\|_{\infty}^{n} \\ &\leq \sum_{n=0}^{+\infty} \|M\|_{\infty}^{n} \\ &= (1 - \|M\|_{\infty})^{-1} < +\infty. \end{split}$$

Robust Stability under Unstructured Uncertainty

Theorem: Let $W_i \in RH_{\infty}$, $P_{\Delta} = P_0 + W_1 \Delta W_2$ for $\Delta \in RH_{\infty}$ and *K* be a stabilizing controller for P_0 . Then *K* is robustly stabilizing for all $\Delta \in \mathcal{B}RH_{\infty}$ is and only if

$$||W_2 K S_o W_1||_{\infty} < 1.$$

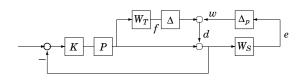
Proof: Introduce

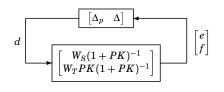
$$\begin{split} T_{\Delta} &= \begin{pmatrix} I & -K \\ -P_{\Delta} & I \end{pmatrix} = T_0 - \begin{pmatrix} 0 \\ W_1 \end{pmatrix} \Delta \begin{pmatrix} W_2 & 0 \end{pmatrix} \\ &= T_0 \left(I - T_0^{-1} \begin{pmatrix} 0 \\ W_1 \end{pmatrix} \Delta \begin{pmatrix} W_2 & 0 \end{pmatrix} \right) = T_0 \Phi \end{split}$$

Assuming nominal stability, i.e. $T_0^{-1} \in RH_\infty$, robust stability holds if and only if $\Phi^{-1} \in RH_\infty$ for all $\Delta \in \mathcal{B}RH_\infty$

Uncertainty Model ($\ \Delta\ \le 1$)	Robust stability test
$(I + W_1 \Delta W_2)P$	$\ W_2 T_o W_1\ _{\infty} < 1$
$P(I + W_1 \Delta W_2)$	$\ W_2T_iW_1\ _{\infty} < 1$
$(I+W_1\Delta W_2)^{-1}P$	$\ W_2 S_o W_1\ _\infty < 1$
$P(I+W_1\Delta W_2)^{-1}$	$\ W_2S_iW_1\ _{\infty} < 1$
$P + W_1 \Delta W_2$	$\ W_2 K S_o W_1\ _{\infty} < 1$
$P(I+W_1\Delta W_2 P)^{-1}$	$\ W_2S_oPW_1\ _\infty < 1$
$(ilde{M}+ ilde{\Delta}_M)^{-1}(ilde{N}+ ilde{\Delta}_N)$	$ \left\ \begin{pmatrix} K \\ I \end{pmatrix} S_o \tilde{M}^{-1} \right\ _{\infty} < 1 $
$\Delta = [\tilde{\Delta}_N \ \tilde{\Delta}_M]$	$\ \ (I)^{S_0 M} \ _{\infty} \leq 1$
$(N+\Delta_N)(M+\Delta_M)^{-1}$	$\left\ M^{-1}S_i \left(K I \right) \right\ < 1$
$\Delta = [\Delta_N \ \Delta_M]$	$\left\ \ ^{m} = S_{i} \left(\prod_{i=1}^{n} \right) \right\ _{\infty} \leq 1$

Equivalent Diagrams for Robust Stability





Proof of Necessity

Assume that $||M(j\omega)|| = \sigma \ge 1$ for some $\omega_0 \in [0, \infty]$. This means existence of singular vectors $\bar{u}, \bar{v} \in \mathbb{C}$ with $|\bar{u}| = |\bar{v}| = 1$ and $M(j\omega)\bar{v} = \sigma\bar{u}$. Define

$$\Delta(s) = \begin{bmatrix} |\bar{v}_1| \frac{\alpha_1 - s}{\alpha_1 + s} & \dots & |\bar{v}_n| \frac{\alpha_m - s}{\alpha_m + s} \end{bmatrix}^T \begin{bmatrix} |\bar{u}_1| \frac{\beta_1 - s}{\beta_1 + s} & \dots & |\bar{u}_n| \frac{\beta_m - s}{\beta_m + s} \end{bmatrix} \frac{1}{\sigma}$$

where α_j and β_k are chosen such that $\Delta(i\omega_0) = \bar{v}\bar{u}^*\frac{1}{\sigma}$. Then $\Delta \in RH^{m \times m}_{\infty}$, $\|\Delta\| = \sigma^{-1} \leq 1$ and

$$det[I - M(j\omega_0)\Delta(i\omega_0)] = det[I - M(j\omega_0)\bar{v}\bar{u}^*/\sigma]$$
$$= 1 - \frac{\bar{u}^*M(j\omega_0)\bar{v}}{\sigma} = 0.$$

Hence the closed loop system (M, Δ) is either not well-posed (if $\omega_0 = \infty$) or unstable (if $\omega_0 < \infty$).

Note that $\Phi \in RH_{\infty}$, so $\Phi^{-1} \in RH_{\infty}$ iff det Φ has a stable inverse. The determinant identity in [Zhou,p. 14] yields

$$\det \Phi = \det \left(I - \begin{pmatrix} W_2 & 0 \end{pmatrix} T_0^{-1} \begin{pmatrix} 0 \\ W_1 \end{pmatrix} \Delta \right)$$

Hence robust stability is equivalent to the condition that

$$I - \begin{pmatrix} W_2 & 0 \end{pmatrix} T_0^{-1} \begin{pmatrix} 0 \\ W_1 \end{pmatrix} \Delta \Big)^{-1} \in RH_{\infty}$$

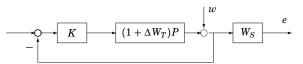
which in turn by small gain theorem is equivalent to

$$\left\| \begin{pmatrix} W_2 & 0 \end{pmatrix} T_0^{-1} \begin{pmatrix} 0 \\ W_1 \end{pmatrix} \right\|_{\infty} < 1$$

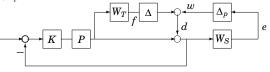
The desired condition follows as

$$T_0^{-1} = \begin{pmatrix} S_i & KS_o \\ PS_i & S_o \end{pmatrix} \qquad \begin{pmatrix} W_2 & 0 \end{pmatrix} T_0^{-1} \begin{pmatrix} 0 \\ W_1 \end{pmatrix} = W_2 K S_o W_1$$

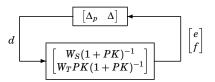
Robust Performance for Unstructured Uncertainty



The closed loop map from *w* to *e* is $T_{ew} = W_S(1 + P_\Delta K)^{-1}$, where $P_\Delta = (1 + \Delta W_T)P$. Given robust stability, a robust performance specification is $||T_{ew}||_{\infty} < 1$ for all $\Delta \in \mathcal{B}RH_{\infty}$. This is equivalent to stability of the following diagram for $\Delta, \Delta_p \in \mathcal{B}RH_{\infty}$:



Condition for Robust Performance



Hence a small gain argument gives that the robust performance specification

$$\|T_{ew}\|_{\infty} < 1$$
 for all $\Delta \in \mathscr{B}RH_{\infty}$

is equivalent to the condition

$$\max_{\omega} \left[|W_S(1 + PK)^{-1}| + |W_T PK(1 + PK)^{-1}| \right] < 1$$

Linear Fraction Transformation

In complex analysis a linear fractional transformation (LFT) is a function in the form $F(s) = \frac{a+bs}{c+ds}$. If $c \neq 0$ then equivalently $F(s) = \alpha + \beta s (1 - \gamma s)^{-1}$.

Definition: For a complex matrix $M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$ and other complex matrices Δ_l , Δ_u of appropriate size define a *lower* LFT with respect to Δ_l as

$$\mathcal{F}_{l}(M,\Delta_{l}) = M_{11} + M_{12}\Delta_{l}(I - M_{22}\Delta_{l})^{-1}M_{21}$$

and an *upper* LFT with respect to Δ_u as

$$\mathcal{F}_{u}(M,\Delta_{u}) = M_{22} + M_{21}\Delta_{u}(I - M_{11}\Delta_{u})^{-1}M_{12}$$

provided the inverse matrices exist.

Usage of LFT

- LFT is a useful way to standardize block diagram, that is to bring it to some canonical form.
- Systems with parametric uncertainties, i.e. with unknown coefficients in state space models can be represented as an LFT with respect to uncertain parameters (see examples in [Zhou]).
- Basic principle: use LFT to "pull out all uncertainties" which can appear in different points of a block diagram and to combine them in one uncertainty.

Motivation

 $\begin{pmatrix} w_1\\ u_1 \end{pmatrix}$

 $u_1 = \Delta_l y_1$

Consider closed loop systems

 $\begin{bmatrix} z_1 \\ v_1 \end{bmatrix}$

$$\begin{pmatrix} y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} u_2 \\ w_2 \end{pmatrix} \qquad u_2 = \Delta_u y_2$$

 $\begin{pmatrix} M_{11} & M_{12} \ M_{21} & M_{22} \end{pmatrix}$

Then

 $T_{z_1w_1}=\mathcal{F}_l(M,\Delta_l), \quad T_{z_2w_2}=\mathcal{F}_u(M,\Delta_u).$

Remark: In what follows we shall often use just LFT without distinguishing it to be lower or upper. It will be clear from context. Moreover $\mathcal{F}_u(N,\Delta) = \mathcal{F}_l(M,\Delta)$ where

$$N=egin{pmatrix} M_{22}&M_{21}\ M_{12}&M_{11} \end{pmatrix}$$

What have we learned today?

- Basic uncertainty models: additive, multiplicative, coprime factor etc.
- Robust stability stability for all systems in a family closed by a single controller.
- ▶ Small Gain Theorem as a main tool for robust stability under unstructured uncertainty. Robust stability is equivalent to some H_{∞} nominal performance.
- Conditions for robust performance are usually much harder to obtain explicitly.
- Linear Fractional Transformation as a standard way to represent an uncertain system combining all uncertainties in one.