
Lecture 2

◮ Well-posedness and internal stability.

◮ Coprime factorization over H∞.

◮ Performance specifications in terms of H2 and H∞ norms.

Well-Posedness

Even for a matrix equation Ax = b, the solution x does not
always exist.

Feedback gives a linear equation in an infinite-dimensional
space. Solvability?

❤
❤

P(s)

K (s)

✲

✛✛

✲ ✛

✲
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e1 = K e2 +w1

e2 = Pe1 +w2

Example: Let P(s) = s+1
s+2 and K (s) = 1. The closed-loop

system is not proper

1
1− s+1

s+2
=
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
 I −K
−P I





e1

e2


 =


w1

w2




The system is solvable if the matrix of the system is invertible
for almost all s. Then


e1

e2


 =


 I −K
−P I



−1 w1

w2




Definition: The closed-loop system is called well-posed if


 I −K
−P I



−1

exists for almost all s and is a proper function.

Lemma: Let G be proper and square. Then G−1 exists for
almost all s and is proper if and only if G(∞) is nonsingular.

Proof: Let G(s) = C(sI − A)−1 B + D. Hence G(∞) = D.

“[”

G−1 exists and is proper [ G(∞)−1 exists and is bounded [
G(∞) is nonsingular.

“Z”

Calculate the inverse by [Zhou,p. 14]

G(s)−1 = (D + C(sI − A)−1 B)−1 =

= D−1 − D−1C(sI − A+ B D−1C)−1 B D−1.

Hence, the inverse exists for almost all s (except the
eigenvalues of the matrix A− B D−1C) and is proper.

Corollary: The following statement are equivalent

1. The closed-loop system (P, K ) is well-posed,

2.

 I −K (∞)
−P(∞) I


 is invertible,

3. I − K (∞)P(∞) is invertible,
4. I − P(∞)K (∞) is invertible.

Proof: Due to [Zhou,p. 14] and det(I) = 1 we have

det

 I −K
−P I


 = det(I − K P) = det(I − PK )

Remark: Very often in practical cases we have P(∞) = 0 (no
direct feed-through). This gives well-posedness automatically

Internal Stability

Well-posedness guarantees solvability. What about stability?

Definition: The closed-loop system is called internally stable if


 I −K
−P I



−1

∈ RH∞

The H∞-norm of this operator is the L2-gain from disturbances
w to loop signals e. Using the formula in [Zhou,p. 14] we get the
equivalent condition


 (I − K P)−1 K (I − PK )−1

P(I − K P)−1 (I − PK )−1


 ∈ RH∞.

Corollary 1: Let K ∈ RH∞. Then (P, K ) is internally stable iff
it is well-posed and P(I − K P)−1 ∈ RH∞.

Corollary 2: Let P ∈ RH∞. Then (P, K ) is internally stable iff
it is well-posed and K (I − PK )−1 ∈ RH∞.

Corollary 3: Let P and K ∈ RH∞. Then (P, K ) is internally
stable iff it is well-posed and (I − PK )−1 ∈ RH∞.

See [Zhou,p.69] for proof (very easy).

Theorem

The system is internally stable if and only if it is well-posed and

1. There is no unstable pole-zero cancellation in PK ,
2. (I − PK )−1 ∈ RH∞.

Proof: See Zhou Theorem 5.5.
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Definition: Let m, n ∈ RH∞. Then m and n are said to be
coprime over RH∞ if there exist x, y∈ RH∞ such that
xm + yn = 1.

Definition: Two matrices M , N ∈ RH∞ are said to be

◮ right coprime over RH∞ if there exist X , Y ∈ RH∞ such
that 

X Y




M

N


 = X M + Y N = I.

◮ left coprime over RH∞ if there exist X , Y ∈ RH∞ such
that 

M N




X

Y


 = M X + NY = I.

The right hand equations are called Bezout identities

Coprime Factorization over RH∞

Let P be a proper real rational matrix. A right coprime
factorization (rcf) of P is a factorization P = N M−1 where N
and M are right coprime over RH∞.

Similarly, a left coprime factorization (lcf) of P has the form
P = M̃−1 Ñ and Ñ and M̃ are left coprime over RH∞. Of
course, M and M̃ are square.

◮ Coprimeness means there is no cancellation in the fraction
(no nontrivial common right/left divisors).

◮ For scalar plant rcf=lcf.
◮ For real rational matrices both factorizations always exist.
◮ They are not unique.
◮ There is a state space method to calculate them.

Feedback Interpretation
Let P(s) = C(sI − A)−1 B + D, that is

ẋ = Ax + Bu,
y= Cx + Du

Introduce a change of control v = u− Fx where A+ B F is
stable. Then we get

ẋ = (A+ B F)x + Bv u = Fx + v
y= (C + DF)x + Dv

Denote by M(s) the transfer function from v to u and by N(s)
the transfer function from v to y

M(s) = F(sI − A− B F)−1 B + I,
N(s) = (C + DF)(sI − A− B F)−1 B + D.

Therefore, u = Mv, y= Nv and, finally, y= N M−1u

Coprime Factorization and Internal Stability

Consider a plant P and a controller K with some rcf and lcf

P = N M−1 = M̃−1 Ñ K = U V−1 = Ṽ−1Ũ

Theorem: The following conditions are equivalent:

1. The closed-loop system (P, K ) is internally stable.

2.

M U

N V


 is invertible in RH∞.

3.

 Ṽ −Ũ
−Ñ M̃


 is invertible in RH∞.

4. M̃ V − ÑU is invertible in RH∞.
5. Ṽ M − Ũ N is invertible in RH∞.

Proof: See [Zhou,p. 74].

Double Coprime Factorization

A double coprime factorization (dcf) of P over RH∞ is a
factorization

P = N M−1 = M̃−1 Ñ

such that there exist Xr, Xl, Yr, Yl ∈ RH∞ and it holds

 Xr Yr
−Ñ M̃





M −Yl

N Xl


 = I.

◮ The only difference between the dcf and a couple of some
rcf and lcf is in additional condition XrYl = Yr Xl

◮ The controller K = −Yl X −1
l = −X −1

r Yr is internally
stabilizing.

◮ There is a state space method to calculate dcf explicitly
(see [Zhou]).

Performance Specifications

Introduce the following notations

Li = K P,
Si = (I + Li)

−1,
Ti = I − Si,

Lo = PK ,
So = (I + Lo)

−1,
To = I − So.

Li — the input loop transfer function,

Lo — the output loop transfer function,

Si — the input sensitivity (up = Sidi).

So — the output sensitivity (y= Sod).

T — the complementary sensitivity.

❢ ❢
❢

❢ K P✲ ✲ ✲ ✲ ✲❄

❄

✻
✲ ❄

✛

r
−

u up
d

n

y
di

y = To(r − n) + SoPdi + Sod,
r − y = So(r − d) + Ton− SoPdi,

u = K So(r − n) − K Sod− Tidi,
up = K So(r − n) − K Sod+ Sidi

1) Good performance requires

σ (Lo) >> 1, σ (Li) >> 1, σ (K ) >> 1.

2) Good robustness and good sensor noise rejection requires

σ (Lo) << 1, σ (Li) << 1, σ (K ) ≤ M .

Conflict!!! Separate frequency bands!

H2 and H∞ Performance.

For good rejection of d at y and u both qSoq and qK Soq should
be small at low-frequency range. It can be captured by the
norm specification

∥∥∥∥

 WeSoWd

ρWu K SoWd



∥∥∥∥

2 or ∞
≤ 1

where Wd reflects the frequency contents of d or models the
disturbance power spectrum, We reflects the requirement on
the shape of So and Wu reflects restriction on the control.

For robustness to high frequency uncertainty, the
complimentary sensitivity has to be limited

∥∥∥∥

 WeSoWd

ρWuToWd



∥∥∥∥
∞

≤ 1
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What have we learned today?

◮ Well-posedness to guarantee solvability.
◮ Internal stability — stability of a feedback loop
◮ Coprime factorization and internal stability.
◮ State space formula to calculate coprime factors.
◮ Performance specifications
◮ Using norms to capture loop requirements.
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