
Robust Control, 9ECTS

◮ Introduction. Spaces, operators, norms.
◮ Internal stability, performance measures
◮ Models of system uncertainty
◮ Structured uncertainty and µ-synthesis
◮ H2 and H∞ optimal control
◮ Methods based on convex optimization
◮ Gap metrics and H∞ loop shaping

Lecture 1

◮ Historical remarks
◮ The class of linear systems as a linear space
◮ Norm and inner product as a way to measure distance
◮ Banach and Hilbert spaces: L∞ and L2

◮ The Hardy spaces: H2 and H∞

◮ Matrix computations

Zhou/Doyle, chapter 4

Introduction

◮ Without uncertainty there is no need for feedback
◮ A brief history

◮ Black, Bode and Nyquist
◮ Bode’s ideal loop transfer function
◮ Horowitz and QFT
◮ State space theory
◮ H∞, Zames, Glover, Doyle, ...

◮ How to cope with uncertainty
◮ Live with it: Robust control!
◮ Reduce it: Adaptive control!

The Feedback Amplifier

The repeater problem
Black’s invention 1927
Nyquist 1932
Black’s paper 1934
Bode 1940
Bode’s book 1945

−
+

R 2

R 1

V2
V1

V

V2

V1
= −

R2

R1

1
1+ 1

A

(
1+ R2

R1

)

Early theoretical insights

◮ Nyquist 1932
◮ Bode 1940
◮ Important ideas

Nyquist curve
Bode diagram
Bode’s relations
Bode’s integrals
Bode’s ideal loop transfer function

◮ Horowitz 1963 +
Templates
Quantitative Feedback Theory (QFT)

Bode’s Ideal Loop Transfer Function

The repeater problem. Large gain vari-
ations in tube amplifiers What should a
transfer function look like to be indepen-
dent of gain?

L(s) =
( s

ω�c

)n

Phase margin invariant with loop gain n =
−1.5 gives ϕ m = 45○

Horowitz extended Bode’s ideas to deal with arbitrary plant
variations not just gain variations in the QFT method.

State Space Theory

◮ Many useful concepts
State
Observability, reachability
Kalman filters and separation

◮ Uncertainty as parameter errors or additive disturbances
◮ Difficult to deal with unmodeled dynamics
◮ Multi-variable systems

Singular values are what matters for robustness!
◮ H∞ theory

Brought uncertainty into the picture again!
Structured uncertainty and µ

What is this course about?

We design a controller C for a mathematical model M and want
the corresponding real process P to behave well.

Problems:

◮ P ,= M
◮ Even if P = M there is controller implementation errors

Robustness philosophy: The controller C is robust if

P ( M
Cr ( C [ (P, Cr) ( (M , C).

◮ What does it mean “(”? (This lecture)
◮ How to check this? — Analysis.
◮ How to find the controller? — Synthesis
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Linear (or vector) space

Dream: To use intuition from Rn in more general situations

Consider a set X = {x} and F = R or C with two operations
+ : X $ X → X and ⋅ : F$ X → X . Then X is a linear space if

1. x1 + x2 = x2 + x1.
2. (x1 + x2) + x3 = x1 + (x2 + x3).
3. ∃0 ∈ X such that x + 0 = x ∀x ∈ X .
4. ∀x ∈ X ∃(−x) ∈ X such that x + (−x) = 0.
5. (λ1 + λ2)x = λ1x + λ2x.
6. λ(x1 + x2) = λ x1 + λ x2.
7. λ1(λ2x) = (λ1λ2)x.
8. 1x = x.

Normed linear space

A linear space X is called normed if every vector x ∈ X has an
associated real number qxq — its “length”, called the norm of
the vector x, — with the following properties

1. qxq ≥ 0 and qxq = 0 \ x = 0.
2. qλ xq = pλ pqxq.
3. qx1 + x2q ≤ qx1q + qx2q.

Now we can say that x1 ( x2 if qx2 − x1q is small.

Denote by L the set of all linear systems. How should one
equip the space L with a norm? A good choice should support
understanding, but also allow for computational analysis and
synthesis.

Induced norm

A linear system can be considered as an operator from the
input space U to the output space Y. If U and Y are normed
linear spaces then the following system norm is said to be
induced by the signal norms on U and Y

qGq = sup
quqU≤1

qGuqY .

Singular value plot for 2$ 2 system
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What does the plot tell you?

Banach and Hilbert spaces

An inner product is a functional 〈, 〉 with the properties

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0.
2. 〈x1, x2〉 = 〈x2, x1〉.
3. 〈x1 + x2, x3〉 = 〈x1, x3〉 + 〈x2, x3〉.
4. 〈λ x1, x2〉 = λ〈x1, x2〉.

If there is an inner product on X then the norm can be defined
as

qxq =
√
〈x, x〉. (1)

A complete normed linear space is called Banach space. A
Banach space with inner product and the norm (??) is called
Hilbert space.

Remarks:

◮ Completeness means that there is no holes in the space. It
is very important property. For example, people deal with
real numbers rather than with rational numbers because
the latter is not the complete space.

◮ Existence of the inner product gives an additional nice
property of the corresponding norm which makes the
space be very similar to Rn. This property is

qx1 + x2q
2 + qx1 − x2q

2 = 2(qx1q
2 + qx2q

2).

It simplifies drastically the optimization in Hilbert spaces.

Examples: L2 and L∞ spaces.

Example 1: L2 space. Consider the linear space of all
matrix-valued functions on R

L2(R) = {F :
∫

R
tr[F(t)∗ F(t)] dt < +∞}.

This is the Hilbert space with the inner product

〈F, G〉2 =
∫

R
tr[F(t)∗G(t)] dt

Example 2: L∞ space. Consider the linear space of all
matrix-valued functions on R

L∞(R) = {F : ess supσ max[F(t)] < +∞}.

This is a Banach space with qFq∞ = ess supt∈R σ max[F(t)]

Choice of U and Y as L2.

One of the simplest choices of the input and output spaces is
L2(R) mainly because it is the Hilbert space. In this case the
linear system G is a linear operator on L2

G : L2(R) → L2(R)

and the norm of the linear system is L2-induced norm

qGq = sup
quq2≤1

qGuq2 = qG( jω )q∞

where G(s) is the transfer function of LTI system (Parseval’s
relation + Theorem 4.3 in [Zhou+Doyle]).
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Stability and Hardy spaces.

Stability is a very important issue in system analysis.

This motivates the introduction of Hardy spaces:

Define for p = 2 and p = ∞

Hp = {F ∈ Lp( jR) : F is analytic in the right half plane}
qFqHp = sup

σ>0
qF(σ + jω )qLp.

Are these norms easy to compute?

If G is stable, rational and strictly proper, then

qGqp := qG( jω )qLp = qGqHp.

Notice that qGq2 is finite if only if G is strictly proper.

L2/H2 norm:

Theorem 1: Let G(s) = C(sI − A)−1 B and A is stable matrix.
Then

qGq2
2 = tr(B∗QB) = tr(CPC∗)

where P is controllability and Q is observability Gramian

AP+ PA∗ + B B∗ = 0,
A∗Q + QA+ C∗C = 0.

The formula for qGq2

The transfer function G(s) is the Laplace transform of the
impulse response

�(t) =

{
CeAt B, t ≥ 0
0, t < 0

Hence by Parseval’s formula

qGq2
2 =

1
2π

∫ ∞

−∞
tr{G(iω )∗G(iω )}dω =

∫ ∞

0
tr{�(t)∗�(t)}dt

=

∫ ∞

0
tr{B∗eA∗tC∗CeAt B}dt = tr(B∗QB)

since

Q =

∫ ∞

0
eA∗tC∗CeAtdt

L∞/H∞ norm:

For real-rational plants qGq∞ < +∞ only if G(s) is proper.

The computation is more complicated than for H2 norm and
requires a search.

Theorem 2: Let G(s) = C(sI − A)−1 B + D ∈ H∞. Then
qGq∞ < γ if and only if

1. σ max(D) < γ ,
2. H has no eigenvalues on the imaginary axis

where R = γ 2 I − D∗ D and

H =


 A+BR−1 D∗C BR−1 B∗

−C∗(I+DR−1 D∗)C −(A+BR−1 D∗C)∗




qGq∞ when G(s) = C(sI − A)−1B + D

Let γ 2 be an eigenvalue of G(iω )G(iω )∗ with eigenvector v:

[C(iω I − A)−1 B + D]∗v = γ u [C(iω I − A)−1 B + D]u = γ v

Define

p = (iω I − A)−1 Bu q = (−iω I − A∗)−1C∗v

Then
[
u
v

]
=

[
−D γ I
γ I −D∗

]−1 [C 0
0 B∗

] [
p
q

]

iω
[

p
q

]
=

{[
A 0
0 −A∗

]
+

[
B 0
0 −C∗

] [
−D γ I
γ I −D∗

]−1 [C 0
0 B∗

]}

︸ ︷︷ ︸
H

[
p
q

]

Hence H must have a purely imaginary eigenvalue.

Singular value plot for 2$ 2 system
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]

The Matlab command norm(G,’inf’) uses bisection together
with Theorem 2 to get qGq∞ = 50.25. Frequency sweep with
400 frequency points gives only the maximal value 43.53.

What have we learned today?

◮ Robustness as a property of the closed-loop system to
have similar behavior for all plants “close” to the nominal
one.

◮ Normed linear space as the main tool to handle “close-far”
notion. G1 is “close” to G2 Q qG1 − G2q is small.

◮ qGq depends on norms of input and output signal spaces.
◮ L2 and L∞ plus stability gives H2 and H∞. These are the

most important spaces in the theory of robust control.
◮ They are also not very hard to compute — H2 easier, H∞

harder (needs an iteration).
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