

What is Good Performance?

- An H_{∞} Loop Shaping Procedure. Properties of the robustness margin b_{P,K} и • Justification of H_{∞} Loop Shaping. ► The v-gap Metric What is Good Performance? d n y и K What is captured by the norm $\left\| \begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\|_{\infty} ?$ Remember: A controller should counteract disturbances, but be insensitive to measurement noise. **Use weighting matrices!** d_{s} $n_{\rm S}$ \overline{W}_2 W_1 P y_s u_s u_s K $W_2(i\omega)P(i\omega)$ Measurement errors Frequency Disturbance rejection Lecture 7
 - An H_∞ Loop Shaping Procedure.
 - Properties of the robustness margin b_{P,K}
 - Justification of H_{∞} Loop Shaping.
 - ► The *v*-gap Metric

Loop-Shaping Design

Recall from Lecture 2 that a good performance controller design requires

in the low frequency region:

$$\underline{\sigma}(PK)>>1,\quad \underline{\sigma}(KP)>>1,\quad \underline{\sigma}(K)>>1.$$

in the high frequency region:

$$\overline{\sigma}(PK) << 1, \quad \overline{\sigma}(KP) << 1, \quad \overline{\sigma}(K) \le M$$

where M is not too large.

- 1) Choose W_1 and W_2 and absorb them into the nominal plant *P* to get the shaped plant $P_s = W_2 P W_1$.
- 2) Design the controller K_{∞} to minimize the H_{∞} gain from (n_{s}, d_{s}) to (u_{s}, y_{s}) . If the gain is large, the return to Step 1.
- 3) The final controller is $K = W_1 K_{\infty} W_2$.

(The H_∞ loop shaping design procedure was suggested by Glover and McFarlane, 1990.)

A Notion of Loop Stability Margin

Introduce the quantity $b_{P,K}$

$$b_{P,K} = \left\{ \left\| \begin{bmatrix} I \\ K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\|_{\infty}^{-1}$$

if *K* stabilizes *P* otherwise

The larger $b_{P,K}$ is, the more robustly stable the closed loop system is.

Relation to Gain and Phase Margins

Theorem: Let P be a SISO plant and K be a stabilizing controller. Then

gain margin
$$\geq \frac{1 + b_{P,K}}{1 - b_{P,K}}$$
,
phase margin $\geq 2 \arcsin(b_{P,K})$.

Proof: For SISO system at every ω

$$b_{P,K} = \frac{1}{\|\dots\|_{\infty}} \le \frac{|1 + P(j\omega)K(j\omega)|}{\left\| \begin{bmatrix} 1\\K \end{bmatrix} \begin{bmatrix} 1 & P \end{bmatrix} \right\|} = \frac{|1 + P(j\omega)K(j\omega)|}{\sqrt{1 + |P(j\omega)|^2}\sqrt{1 + |K(j\omega)|^2}}$$

Robust Stabilization of Coprime Factors

Let $P = \tilde{M}^{-1}\tilde{N}$, where $\tilde{N}(i\omega)\tilde{N}(i\omega)^* + \tilde{M}(i\omega)\tilde{M}(i\omega)^* \equiv 1$. This is called *normalized coprime factorization*.

The process $P_{\Delta} = (\tilde{M} + \tilde{\Delta}_M)^{-1} (\tilde{N} + \tilde{\Delta}_N)$ in feedback with the controller K is stable for all $\Delta = [\tilde{\Delta}_N \ \tilde{\Delta}_M]$ with $\|\Delta\|_{\infty} \le \epsilon$ iff

$$\left\| \begin{bmatrix} K\\I \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\|_{\infty} < \frac{1}{\epsilon}$$
(1)

Finding *K* that achieves (1) is a problem of H_{∞} optimization.

Computing Normalized Coprime Factors

Given $P(s) = C(sI - A)^{-1}B$, let *Y* be the stabilizing solution to

 $AY+YA^*-YC^*CY+BB^*=0.$

The matrix $A - YC^*C$ is stable, so we can put $L = -YC^*$.

Lemma: With $L = -YC^*$, a normalized factorization is given by

$$\begin{bmatrix} \tilde{N}(s) & \tilde{M}(s) \end{bmatrix} = \begin{pmatrix} A + LC & B & L \\ \hline C & 0 & I \end{pmatrix},$$

Proof: Denote $\mathcal{A}(s) = (sI - A + YC^*C)^{-1}$ and calculate

$$\begin{split} \tilde{N}\tilde{N}^* + \tilde{M}\tilde{M}^* &= I - \mathcal{C}\mathcal{A}\mathcal{Y}\mathcal{C}^* - \mathcal{C}\mathcal{Y}\mathcal{A}^*\mathcal{C}^* + \mathcal{C}\mathcal{A}(\mathcal{B}^*\mathcal{B} + \mathcal{Y}\mathcal{C}^*\mathcal{C}\mathcal{Y})\mathcal{A}^* \\ &= I + \mathcal{C}\mathcal{A}(\mathcal{B}^*\mathcal{B} + \mathcal{Y}\mathcal{C}^*\mathcal{C}\mathcal{Y} - \mathcal{Y}(\mathcal{A}^*)^{-1} - \mathcal{A}^{-1}\mathcal{Y})\mathcal{A}^*\mathcal{C}^* \\ &= I + \mathcal{C}\mathcal{A}(\underbrace{\mathcal{B}^*\mathcal{B} - \mathcal{Y}\mathcal{C}^*\mathcal{C}\mathcal{Y} + \mathcal{A}\mathcal{Y} + \mathcal{Y}\mathcal{A}^*}_{=0})\mathcal{A}^*\mathcal{C}^* = I \\ &= 0 \end{split}$$

Proof: Define

$$H_{q} = \begin{bmatrix} A - YC^{*}C & 0 \\ -C^{*}C & -(A - YC^{*}C)^{*} \end{bmatrix} \qquad T = \begin{bmatrix} I & -\frac{\gamma^{2}}{\gamma^{2}-1}Y \\ 0 & \frac{\gamma^{2}}{\gamma^{2}-1}I \end{bmatrix}$$

It is straightforward to see that $H_\infty = TH_qT^{-1}$. Since $Q = {
m Ric}(H_q)$ we have the stable invariant subspace for H_∞ as

$$T\begin{bmatrix}I\\Q\end{bmatrix} = \begin{bmatrix}I-rac{\gamma^2}{\gamma^2-1}YQ\\rac{\gamma^2}{\gamma^2-1}Q\end{bmatrix}$$

Finally $\exists X_{\infty} \geq 0$ iff

$$I - \frac{\gamma^2}{\gamma^2 - 1} YQ > 0 \quad \Leftrightarrow \quad \gamma^2 > \frac{1}{1 - \lambda_{max}(YQ)}$$

Note that Y and Q are controllability and observability Gramians for $[\tilde{N} \ \tilde{M}]$.

So at frequencies where $k := -PK \in R^+$ we have

$$\begin{array}{rcl} b_{P,K} & \leq & \displaystyle \frac{|1-k|}{\sqrt{(1+|P|^2)(1+k^2/|P|^2)}} \leq \\ & \leq & \displaystyle \frac{|1-k|}{\sqrt{\min_P\{(1+|P|^2)(1+k^2/|P|^2)\}}} = \displaystyle \frac{|1-k|}{|1+k|} \end{array}$$

from which the gain margin result follows.

Similarly at frequencies where $PK = -e^{i\theta}$

$$\begin{array}{rcl} b_{P,K} & \leq & \displaystyle \frac{|1 - e^{i\theta}|}{\sqrt{(1 + |P|^2)(1 + 1/|P|^2)}} \leq \\ & \leq & \displaystyle \frac{|1 - e^{i\theta}|}{\sqrt{\min_P\{(1 + |P|^2)(1 + 1/|P|^2)\}}} = \displaystyle \frac{2|\sin(\theta/2)|}{2} \end{array}$$

which implies the phase margin result.

Proof

The interconnection of $P_{\Delta} = (\tilde{M} + \tilde{\Delta}_M)^{-1} (\tilde{N} + \tilde{\Delta}_N)$ and K can be rewritten as an interconnection of $\Delta = [\tilde{\Delta}_N \ \tilde{\Delta}_M]$ and

$$\begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \tilde{M}^{-1}$$

The small gain theorem therefore gives the stability condition

$$\begin{split} &\frac{1}{\epsilon} > \left\| \begin{bmatrix} K\\I \end{bmatrix} (I + PK)^{-1} \tilde{M}^{-1} \right\|_{\infty} \\ &= \left\| \begin{bmatrix} K\\I \end{bmatrix} (I + PK)^{-1} \tilde{M}^{-1} \begin{bmatrix} \tilde{N} & \tilde{M} \end{bmatrix} \right\|_{\infty} \\ &= \left\| \begin{bmatrix} K\\I \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right\|_{\infty} \end{split}$$

H_{∞} Optimization of Normalized Coprime Factors

Theorem: Let D = 0 and $L = -YC^*$ where $Y \ge 0$ is the stabilizing solution to $AY + YA^* - YC^*CY + BB^* = 0$. Then $P = \tilde{M}^{-1}\tilde{N}$ is a normalized left coprime factorization and

$$\inf_{K-\text{stab}} \left\| \begin{bmatrix} K \\ I \end{bmatrix} (I+PK)^{-1} \tilde{M}^{-1} \right\|_{\infty} = \frac{1}{\sqrt{1-\lambda_{\max}(YQ)}}$$
$$= \left(1 - \|\tilde{N} \ \tilde{M}\|_{H}^{2}\right)^{-1/2}$$

where $Q(A - YC^*C) + (A - YC^*C)^*Q + C^*C = 0$.. Moreover, a controller achieving $\gamma > \gamma_{opt}$ is

$$K(s) = \left(\frac{A - BB^*X_{\infty} - YC^*C \mid -YC^*}{-B^*X_{\infty} \mid 0}\right)$$
$$X_{\infty} = \frac{\gamma^2}{\gamma^2 - 1}Q\left(I - \frac{\gamma^2}{\gamma^2 - 1}YQ\right)^{-1}$$

Right Coprime Factors

What if we have a normalized right coprime factorization $P = NM^{-1}$?

Theorem:

$$\left| \begin{bmatrix} I \\ K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \right|_{} = \left\| \begin{bmatrix} I \\ P \end{bmatrix} (I + KP)^{-1} \begin{bmatrix} I & K \end{bmatrix} \right\|.$$

Corollary: Let $P=NM^{-1}=\tilde{M}^{-1}\tilde{N}$ be the normalized rcf and lcf, respectively. Then

$$\left\| \begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \tilde{M}^{-1} \right\|_{\infty} = \left\| M^{-1} (I + KP)^{-1} \begin{bmatrix} I & K \end{bmatrix} \right\|_{\infty}$$

Conclusion: It does not matter what kind of factorization we have. One can work with either left or right.

Lecture 7

- An H_{∞} Loop Shaping Procedure.
- Properties of the robustness margin b_{P,K}
- Justification of H_{∞} Loop Shaping.
- ► The *v*-gap Metric

1) Choose W_1 and W_2 and absorb them into the nominal plant P to get the shaped plant $P_s = W_2 P W_1$.

2) Calculate $b_{opt}(P_s) = \sqrt{1 - \|\tilde{N}_s \ \tilde{M}_s\|_H^2}$. If it is small then return to Step 1 and adjust weights.

3) Select $\epsilon \leq b_{opt}(P_s)$ and design the controller K_∞ such that

$$\left\| \begin{bmatrix} I \\ K_{\infty} \end{bmatrix} (I + P_s K_{\infty})^{-1} \tilde{M}_s^{-1} \right\|_{\infty} < \epsilon^{-1}$$

4) The final controller is $K = W_1 K_{\infty} W_2$.

Justification of H_∞ Loop Shaping

We show that the degradation in the loop shape caused by K_{∞} is limited. Consider low-frequency region first.

$$\underline{\sigma}(PK) = \underline{\sigma}(W_2^{-1}P_sK_{\infty}W_2) \ge \frac{\underline{\sigma}(P_s)\underline{\sigma}(K_{\infty})}{\kappa(W_2)}$$
$$\underline{\sigma}(KP) = \underline{\sigma}(W_1K_{\infty}P_sW_1^{-1}) \ge \frac{\underline{\sigma}(P_s)\underline{\sigma}(K_{\infty})}{\kappa(W_1)}$$

where κ denotes conditional number. Thus small $\underline{\sigma}(K_{\infty})$ might cause problem even if P_s is large. Can this happen?

Theorem: Any K_{∞} such that $b_{P_s,K_{\infty}} \geq 1/\gamma$ also satisfies

$$\underline{\sigma}(K_{\infty}) \geq \frac{\underline{\sigma}(P_s) - \sqrt{\gamma^2 - 1}}{\sqrt{\gamma^2 - 1}\underline{\sigma}(P_s) + 1} \quad \text{ if } \underline{\sigma}(P_s) > \sqrt{\gamma^2 - 1}.$$

Corollary: If $\underline{\sigma}(P_s) >> \sqrt{\gamma^2 - 1}$ then $\underline{\sigma}(K_{\infty}) \geq 1/\sqrt{\gamma^2 - 1}$

Denote

$$\overline{\sigma}_i = \overline{\sigma}(W_i), \quad \underline{\sigma}_i = \underline{\sigma}(W_i), \quad \kappa_i = \kappa(W_i).$$

Theorem: Let *P* be the nominal plant and let $K = W_1 K_{\infty} W_2$ be the controller designed by loop shaping. If $b_{P_s,K_{\infty}} \ge 1/\gamma$ then

$$\begin{array}{lll} \overline{\sigma}(K(I+PK)^{-1}) &\leq & \gamma \overline{\sigma}(\tilde{M}_s)\overline{\sigma}_1\overline{\sigma}_2, \\ \overline{\sigma}((I+PK)^{-1}) &\leq & \min\{\gamma \overline{\sigma}(\tilde{M}_s)\kappa_2, 1+\gamma \overline{\sigma}(\tilde{N}_s)\kappa_2\}, \\ \overline{\sigma}(K(I+PK)^{-1}P) &\leq & \min\{\gamma \overline{\sigma}(\tilde{N}_s)\kappa_1, 1+\gamma \overline{\sigma}(\tilde{M}_s)\kappa_1\}, \\ \overline{\sigma}((I+PK)^{-1}P) &\leq & \frac{\gamma \overline{\sigma}(\tilde{N}_s)}{\underline{\sigma}_1 \underline{\sigma}_2}, \\ \overline{\sigma}((I+KP)^{-1}) &\leq & \min\{1+\gamma \overline{\sigma}(\tilde{N}_s)\kappa_1, \gamma \overline{\sigma}(\tilde{M}_s)\kappa_1\}, \\ \overline{\sigma}(P(I+KP)^{-1}K) &\leq & \min\{1+\gamma \overline{\sigma}(\tilde{M}_s)\kappa_2, \gamma \overline{\sigma}(\tilde{N}_s)\kappa_2\} \end{array}$$

where

 $\overline{\sigma}(ilde{N}_s) = \left(rac{\overline{\sigma}^2(P_s)}{1+\overline{\sigma}^2(P_s)}
ight)^{1/2} \qquad \overline{\sigma}(ilde{M}_s) = \left(rac{1}{1+\overline{\sigma}^2(P_s)}
ight)^{1/2}$

Loop-Shaping Design

Recall from Lecture 2 that a good performance controller design requires

► in the low frequency region:

$$\underline{\sigma}(PK) >> 1, \quad \underline{\sigma}(KP) >> 1, \quad \underline{\sigma}(K) >> 1.$$

in the high frequency region:

$$\overline{\sigma}(PK) << 1, \quad \overline{\sigma}(KP) << 1, \quad \overline{\sigma}(K) \leq M$$

where M is not too large.

Conclusion: Performance depends strongly on open loop shape.

Remarks:

- In contrast to the classical loop shaping design we do not treat explicitly closed loop stability, phase and gain margins. Thus the procedure is simple.
- Observe that

$$\left\| \begin{bmatrix} I\\ K_{\infty} \end{bmatrix} (I + P_s K_{\infty})^{-1} \tilde{M}_s^{-1} \right\|_{\infty} = \left\| \begin{bmatrix} W_2\\ W_1^{-1} K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} W_2^{-1} & PW_1 \end{bmatrix} \right\|_{\infty}$$

so it has an interpretation of the standard ${\cal H}_\infty$ optimization problem with weights.

► BUT!!! The open loop under investigation on Step 1 is K_∞W₂PW₁ whereas the actual open loop is given by W₁K_∞W₂P and PW₁K_∞W₂. This is not really what we has shaped!

Thus the method needs validation.

Consider now high frequency region.

$$\begin{array}{lll} \overline{\sigma}(PK) &=& \overline{\sigma}(W_2^{-1}P_sK_{\infty}W_2) \leq \overline{\sigma}(P_s)\overline{\sigma}(K_{\infty})\kappa(W_2), \\ \overline{\sigma}(KP) &=& \overline{\sigma}(W_1K_{\infty}P_sW_1^{-1}) \leq \overline{\sigma}(P_s)\overline{\sigma}(K_{\infty})\kappa(W_1). \end{array}$$

Can $\overline{\sigma}(K_{\infty})$ be large if $\overline{\sigma}(P_s)$ is small?

Theorem: Any K_{∞} such that $b_{P_s,K_{\infty}} \ge 1/\gamma$ also satisfies

$$\overline{\sigma}(K_{\infty}) \leq \frac{\sqrt{\gamma^2 - 1} + \overline{\sigma}(P_s)}{1 - \sqrt{\gamma^2 - 1}\overline{\sigma}(P_s)} \quad \text{ if } \overline{\sigma}(P_s) < \frac{1}{\sqrt{\gamma^2 - 1}}$$

Corollary: If $\overline{\sigma}(P_s) \ll 1/\sqrt{\gamma^2 - 1}$ then $\overline{\sigma}(K_{\infty}) \leq \sqrt{\gamma^2 - 1}$ One can get the idea of proof from SISO relation

$$b_{P,K} \leq rac{|1+P_s(j\omega)K_\infty(j\omega)|}{\sqrt{1+|P_s(j\omega)|^2}\sqrt{1+|K_\infty(j\omega)|^2}}.$$

Lecture 7

- An H_{∞} Loop Shaping Procedure.
- ▶ Properties of the robustness margin *b*_{*P,K*}
- ▶ Justification of H_∞ Loop Shaping.
- The v-gap Metric

v-Gap Metric

$$\delta_{\scriptscriptstyle V}(P_1,P_2) = \begin{cases} \|(I\!+\!P_2P_2^*)^{-\frac{1}{2}}(P_1\!-\!P_2)(I\!+\!P_1^*P_1)^{-\frac{1}{2}}\|_{\infty} \\ \text{if } \det(I+P_2^*P_1) \neq 0 \text{ on } jR \text{ and} \\ \text{wno } \det(I\!+\!P_2^*P_1) + \eta(P_1) = \overline{\eta}(P_2), \\ 1 \text{ otherwise} \end{cases}$$

where $\overline{\eta}~(\eta)$ is the number of closed (open) RHP poles and wno is winding number.

In scalar case it takes on the particularly simple form

$$\delta_{\nu}(P_1, P_2) = \sup_{\omega \in R} \frac{|P_2(j\omega) - P_1(j\omega)|}{\sqrt{1 + |P_1(j\omega)|^2}\sqrt{1 + |P_2(j\omega)|^2}}$$

whenever the winding number condition is satisfied. Geometrical interpretation: Distance on the Riemann sphere

Theorem

For any P_0 , P and K

 $\arcsin b_{P,K} \ge \arcsin b_{P_0,K} - \arcsin \delta_{\nu}(P_0,P).$

Corollary 1: If $b_{P_0,K} > \delta_{\nu}(P_0,P)$ then (P,K) is stable.

Corollary 2: For any P_0 , P, K_0 and K

 $\arcsin b_{P,K} \ge \arcsin b_{P_0,K_0} - \arcsin \delta_{\nu}(P_0,P) - \arcsin \delta_{\nu}(K_0,K).$

Proof: By Theorem we have

 $rcsin b_{P,K_0} \ge rcsin b_{P_0,K_0} - rcsin \delta_{v}(P_0, P)$ $rcsin b_{P,K} \ge rcsin b_{P,K_0} - rcsin \delta_{v}(K_0, K)$

Example

Consider

 $P_1(s) = rac{1}{s}, \quad P_2(s) = rac{1}{s+0.1}.$

We had $\|P_1 - P_2\|_{\infty} = +\infty$. However

 $\delta_{\scriptscriptstyle V}(P_1,P_2)pprox 0.09951$

which means that the system are, in fact, very close.

What have we learned today?

- ▶ H_∞ optimization of normalized coprime factors.
- Left or right coprime factors does not matter.
- Stability margin $b_{P,K}$. The larger the better. Relation to gain and phase margins.
- H_{∞} loop shaping via pre- and postcompensations and optimization of $b_{P,K}$.
- Robustness in terms of δ_v -gap