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What is Good Performance?
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What is Good Performance?

What is captured by the norm
K _
H M (I+PK)[I p}Hm ?

Remember: A controller should counteract disturbances, but be
insensitive to measurement noise.

Loop-Shaping Design

Recall from Lecture 2 that a good performance controller
design requires

» in the low frequency region:

o(PK)>>1, o(KP)>>1, o(K)>>1.
» in the high frequency region:

o(PK)<<1, o(KP)<<1l, o(K)<M

where M is not too large.

Use weighting matrices!
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1) Choose W; and Wy and absorb them into the nominal
plant P to get the shaped plant P, = Wy PW;.

2) Design the controller K, to minimize the H,, gain from
(ns,ds) to (us,ys). If the gain is large, the return to Step 1.

3) The final controller is K = W1 K, Ws.

(The H,, loop shaping design procedure was suggested by Glover
and McFarlane, 1990.)
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A Notion of Loop Stability Margin

Introduce the quantity bp x

1
K (o o)

0 otherwise

-1

(1+PK)™[1 P if K stabilizes P

bpx =

The larger bp ¢ is, the more robustly stable the closed loop
system is.




Relation to Gain and Phase Margins

Theorem: Let P be a SISO plant and K be a stabilizing
controller. Then

1+bpx
1-bpx’

gain margin

\%

phase margin > 2arcsin(bp k).

Proof: For SISO system at every o

1 _[+PUo)K(jo) |1+ P(0)K (jo)|

bpx =

T I+ PG)PYI+ K (o)

e

So at frequencies where k := —PK € Rt we have
[1— |
b <
ST VaE PR+ RIPR)
|1— k| i
Vminp{(1+ [P2)(1+ £2/[P2)}  [1+F]
from which the gain margin result follows.
Similarly at frequencies where PK = —e'?
|1 — e
bpx <
VA +[PR)(1+1/]PP)
|1— € _ 2|sin(6/2)|
Vminp{(1+[P]?)(1+1/[P]?)} 2

which implies the phase margin result.

Robust Stabilization of Coprime Factors

Let P= M~'N, where N (io)N (iw)* + M (io)M (iv)* = 1.
This is called normalized coprime factorization.

The process Py = (M + Ay)
controller K is stable for all A =

~1(N + Ay) in feedback with the

4] s e 2] < .
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Finding K that achieves (1) is a problem of H, optimization.

Proof

(N +Ay)and K can
[AN AM] and

The interconnection of Py = (M + Ap)~!
be rewritten as an interconnection of A =

{ﬂ (I+PK)" 31"

The small gain theorem therefore gives the stability condition

% > H {ﬂ (I+PK)M!

00

= H {ﬂ (I+PK)'M™' [N M]
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Computing Normalized Coprime Factors

Given P(s) = C(sI — A)™1B, let Y be the stabilizing solution to

AY + YA*—YC*CY + BB =0.

The matrix A — YC*C is stable, so we can put L = —YC*.

Lemma: With L = —Y C*, a normalized factorization is given by

e 6] = (AT

Proof: Denote 4(s) = (s — A+ YC*C)~! and calculate

NN*+MM* = I-CAYC*—CYA'C* + CA(B*B+YC*CY)A*
I+ CA(B*B+YC'CY-Y(A*)-a-'y)a*C*
= I+CA(B'B—YC'CY+AY+YA)A'C* =1

=0

H,, Optimization of Normalized Coprime Factors

Theorem: Let D =0and L = —YC* where Y > 0O is the
stabilizing solution to AY + YA* — YC*CY + BB* = 0. Then
P = M~'N is a normalized left coprime factorization and

. K P 3 1
A e = 7 (7Q)
T —1/2
= (1-I~ M)

where Q(A—YC*C) + (A-YC*C)*Q + C*C = 0.. Moreover,
a controller achieving y > ¥op: is

A-BB*'X,—YC'C|-YC*
K@) = ( —B'X., o )
-1
_ ,},2 _ 7/2
Xoo = y2—1Q<I 72—1YQ>

Proof: Define

_[A-YC*C 0 | =Y
It is straightforward to see that H,, = TH,T 1. Since

® = Ric(H,) we have the stable invariant subspace for H,, as

11 |1--£.YQ
-
? { 719

Finally 3X, > 0 iff

Y

_ 2
I 7/2_1YQ>0 & 7>

1
1 - j-max(}IQ) '

Note that Y and @ are controllability and observability
Gramians for [N M].

Right Coprime Factors

What if we have a normalized right coprime factorization
P=NM"1?

Theorem:

Corollary: Let P=NM~! =
Icf, respectively. Then

g usrrri B = | arxpn &,

M~1N be the normalized rcf and

H {ﬂ (I+PK)'3

HM*I(I +KP)'[I K] Hw

Conclusion: It does not matter what kind of factorization we
have. One can work with either left or right.
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Loop-Shaping Design

Recall from Lecture 2 that a good performance controller
design requires

» in the low frequency region:
o(PK)>>1, o(KP)>>1, o(K)>>1.
» in the high frequency region:
o(PK)<<1, o(KP)<<1l, o(K)<M
where M is not too large.

Conclusion: Performance depends strongly on open loop
shape.

1) Choose W; and W, and absorb them into the nominal plant
P to get the shaped plant Ps = WoPW;.

2) Calculate oy (Ps) = /1 — ||Ns M||%. If it is small then
return to Step 1 and adjust weights.

3) Select € < b,,:(Ps) and design the controller K, such that
,14

H {KI ] (I+PK) M| <«
0

00

4) The final controller is K = W1 K, Ws.

Remarks:

» In contrast to the classical loop shaping design we do not
treat explicitly closed loop stability, phase and gain
margins. Thus the procedure is simple.

» Observe that
1 Jeraronc] <[t oz o],

so it has an interpretation of the standard H, optimization
problem with weights.

» BUT!!! The open loop under investigation on Step 1 is
K., W PW; whereas the actual open loop is given by
W1 K WoP and PW; K, Ws. This is not really what we has
shaped!

Thus the method needs validation.

Justification of H,, Loop Shaping

We show that the degradation in the loop shape caused by K,
is limited. Consider low-frequency region first.

_ - o (Ps)o(Kx)
o(PK) = o(WylPK Ws)> AR

_ _ o(Ps)o(Kx)
o(KP) = o(WiKP,Wit)> A

where x denotes conditional number. Thus small o (K ) might
cause problem even if P; is large. Can this happen?

Theorem: Any K, such that bp, g, > 1/y also satisfies

(K > % V(f)‘:l ito(P) > /-1

Corollary: If o(Ps) >> \/y%2—1then o(Kw) > 1//72—1

Consider now high frequency region.
G(PK) = G(WylPK, W) < G(Ps)o(Ku)k(Wy),
G(KP) = G(WiKoPWil) < G(P;)o(Koo)k(Wh).
Can o (K) be large if (Ps) is small?
Theorem: Any K, such that bp, g, > 1/y also satisfies
T, =
Gk g YL IHOP) ypy o L
1—+/y2—16(Ps) y2—-1
Corollary: If 6(Ps) << 1/y/y? —1then 6(K) < VY2 —1
One can get the idea of proof from SISO relation

o +PUOK (o)
2 VIHIRGO)EVT+ a0

bp

Denote
6i=5(W;), o;=0(W), & =«(W).

Theorem: Let P be the nominal plant and let K = W1 K, W, be
the controller designed by loop shaping. If bp, . > 1/y then

G(K(I+PK)™") < y5(M;)5,02
G((I+PK)™") < min{yo(M;)ke, 1+7T(Ns)Ks},
G(K(I+PK)™'P) < min{yG(N,)x1, 147G (M)x1},
5((I+PK)'P) < %
G((I+KP)™Y) < min{1+y6(N,)x1, yo(My)x1},
G(P(I+KP)'K) < min{1+yc(M;)Ks,y0(N,)Ks}

where

1/2
_en [ TP e 1 1z
o = (m) 70~ (emy)
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v-Gap Metric

I(I+P2P;)~% (Pr—Py) (I+P; P1) "% ||
if det(I + P;P;) # 0 on jR and
wno det(I+P’2“P1) + ﬂ(Pl) = ﬁ(Pz),
1 otherwise

Oy(P1, Pp) =

where 77 () is the number of closed (open) RHP poles and wno
is winding number.

In scalar case it takes on the particularly simple form

. |Po(jo) — Pi(jo)|
) = o AT IR GeIEVL + BT

whenever the winding number condition is satisfied.

Geometrical interpretation: Distance on the Riemann sphere

Example

Consider
1

1
Py =3 Rlo) =

We had ||P; — Psl|oo = +00. However
6y (P1, P2) ~ 0.09951

which means that the system are, in fact, very close.

Theorem

For any Py, P and K

arcsinbp g > arcsin bp, g — arcsin J, (P, P).

Corollary 1: If bp, k > 6y(Po, P) then (P, K) is stable.

Corollary 2: For any Py, P, Ko and K

arcsinbp g > arcsin bp, g, — arcsin d, (P, P) — arcsin 6, (Ko, K).

Proof: By Theorem we have

arcsinbpg, > arcsinbp, g, — arcsind, (P, P)
>

arcsinbp g arcsin bp g, — arcsin 6, (Ko, K)

What have we learned today?

» H,, optimization of normalized coprime factors.
» Left or right coprime factors - does not matter.

» Stability margin bp . The larger the better. Relation to
gain and phase margins.

» H,, loop shaping via pre- and postcompensations and
optimization of bp k.
» Robustness in terms of §,-gap




