
Lecture 7

◮ An H∞ Loop Shaping Procedure.

◮ Properties of the robustness margin bP,K

◮ Justification of H∞ Loop Shaping.

◮ The ν -gap Metric
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Remember: A controller should counteract disturbances, but be
insensitive to measurement noise.

Loop-Shaping Design

Recall from Lecture 2 that a good performance controller
design requires

◮ in the low frequency region:

σ (PK ) >> 1, σ (K P) >> 1, σ (K ) >> 1.

◮ in the high frequency region:

σ (PK ) << 1, σ (K P) << 1, σ (K ) ≤ M

where M is not too large.

Use weighting matrices!
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1) Choose W1 and W2 and absorb them into the nominal
plant P to get the shaped plant Ps = W2PW1.

2) Design the controller K∞ to minimize the H∞ gain from
(ns, ds) to (us, ys). If the gain is large, the return to Step 1.

3) The final controller is K = W1 K∞W2.

(The H∞ loop shaping design procedure was suggested by Glover
and McFarlane, 1990.)
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A Notion of Loop Stability Margin

Introduce the quantity bP,K
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if K stabilizes P

0 otherwise

The larger bP,K is, the more robustly stable the closed loop
system is.
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Relation to Gain and Phase Margins

Theorem: Let P be a SISO plant and K be a stabilizing
controller. Then

gain margin ≥
1+ bP,K

1− bP,K
,

phase margin ≥ 2 arcsin(bP,K ).

Proof: For SISO system at every ω
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1
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So at frequencies where k := −PK ∈ R+ we have
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≤

≤
p1− kp√

minP{(1+ pPp2)(1+ k2/pPp2)}
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from which the gain margin result follows.

Similarly at frequencies where PK = −eiθ

bP,K ≤
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≤
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=
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2

which implies the phase margin result.

Robust Stabilization of Coprime Factors

Let P = M̃−1 Ñ, where Ñ(iω )Ñ(iω )∗ + M̃(iω )M̃(iω )∗ " 1.
This is called normalized coprime factorization.

The process P∆ = (M̃ + ∆̃M )
−1(Ñ + ∆̃N) in feedback with the

controller K is stable for all ∆ = [∆̃N ∆̃M ] with q∆q∞ ≤ ǫ iff
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Finding K that achieves (1) is a problem of H∞ optimization.

Proof

The interconnection of P∆ = (M̃ + ∆̃M )
−1(Ñ + ∆̃N) and K can

be rewritten as an interconnection of ∆ = [∆̃N ∆̃M ] and
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Computing Normalized Coprime Factors
Given P(s) = C(sI − A)−1 B, let Y be the stabilizing solution to

AY + YA∗ − YC∗CY + B B∗ = 0.

The matrix A− YC∗C is stable, so we can put L = −YC∗.

Lemma: With L = −YC∗, a normalized factorization is given by

[
Ñ(s) M̃(s)

]
=

(
A+ LC B L

C 0 I

)
,

Proof: Denote A (s) = (sI − A+ YC∗C)−1 and calculate

Ñ Ñ∗ + M̃ M̃∗ = I − CA YC∗ − CYA ∗C∗ + CA (B∗ B+YC∗CY)A ∗C
= I + CA (B∗ B+YC∗CY−Y(A ∗)−1−A−1Y)A ∗C∗

= I + CA (B∗ B−YC∗CY+AY+YA∗
︸ ︷︷ ︸

=0

)A ∗C∗ = I

H∞ Optimization of Normalized Coprime Factors

Theorem: Let D = 0 and L = −YC∗ where Y ≥ 0 is the
stabilizing solution to AY + YA∗ − YC∗CY + B B∗ = 0. Then
P = M̃−1 Ñ is a normalized left coprime factorization and
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where Q(A− YC∗C) + (A− YC∗C)∗Q + C∗C = 0.. Moreover,
a controller achieving γ > γ opt is

K (s) =

(
A− B B∗ X∞ − YC∗C −YC∗

−B∗ X∞ 0

)
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]
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It is straightforward to see that H∞ = T HqT−1. Since
Q = Ric(Hq) we have the stable invariant subspace for H∞ as

T
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Note that Y and Q are controllability and observability
Gramians for [Ñ M̃ ].

Right Coprime Factors

What if we have a normalized right coprime factorization
P = N M−1?

Theorem:
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Corollary: Let P = N M−1 = M̃−1 Ñ be the normalized rcf and
lcf, respectively. Then
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Conclusion: It does not matter what kind of factorization we
have. One can work with either left or right.
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Loop-Shaping Design

Recall from Lecture 2 that a good performance controller
design requires

◮ in the low frequency region:

σ (PK ) >> 1, σ (K P) >> 1, σ (K ) >> 1.

◮ in the high frequency region:

σ (PK ) << 1, σ (K P) << 1, σ (K ) ≤ M

where M is not too large.

Conclusion: Performance depends strongly on open loop
shape.

P

K
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W2

1) Choose W1 and W2 and absorb them into the nominal plant
P to get the shaped plant Ps = W2PW1.

2) Calculate bopt(Ps) =
√

1− qÑs M̃sq2
H . If it is small then

return to Step 1 and adjust weights.
3) Select ǫ ≤ bopt(Ps) and design the controller K∞ such that

∥∥∥∥
[

I
K∞

]
(I + Ps K∞)−1M̃−1

s

∥∥∥∥
∞

< ǫ−1.

4) The final controller is K = W1 K∞W2.

Remarks:

◮ In contrast to the classical loop shaping design we do not
treat explicitly closed loop stability, phase and gain
margins. Thus the procedure is simple.

◮ Observe that
∥∥∥∥
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so it has an interpretation of the standard H∞ optimization
problem with weights.

◮ BUT!!! The open loop under investigation on Step 1 is
K∞W2PW1 whereas the actual open loop is given by
W1 K∞W2P and PW1 K∞W2. This is not really what we has
shaped!

Thus the method needs validation.

Justification of H∞ Loop Shaping

We show that the degradation in the loop shape caused by K∞
is limited. Consider low-frequency region first.

σ (PK ) = σ (W−1
2 Ps K∞W2) ≥

σ (Ps)σ (K∞)
κ (W2)

,

σ (K P) = σ (W1 K∞PsW−1
1 ) ≥

σ (Ps)σ (K∞)
κ (W1)

where κ denotes conditional number. Thus small σ (K∞) might
cause problem even if Ps is large. Can this happen?

Theorem: Any K∞ such that bPs,K∞ ≥ 1/γ also satisfies

σ (K∞) ≥
σ (Ps) −

√
γ 2 − 1√

γ 2 − 1σ (Ps) + 1
if σ (Ps) >

√
γ 2 − 1.

Corollary: If σ (Ps) >>
√

γ 2 − 1 then σ (K∞) ≥ 1/
√

γ 2 − 1

Consider now high frequency region.

σ (PK ) = σ (W−1
2 Ps K∞W2) ≤ σ (Ps)σ (K∞)κ (W2),

σ (K P) = σ (W1 K∞PsW−1
1 ) ≤ σ (Ps)σ (K∞)κ (W1).

Can σ (K∞) be large if σ (Ps) is small?

Theorem: Any K∞ such that bPs,K∞ ≥ 1/γ also satisfies

σ (K∞) ≤
√

γ 2 − 1+σ (Ps)

1−
√

γ 2 − 1σ (Ps)
if σ (Ps) <

1√
γ 2 − 1

.

Corollary: If σ (Ps) << 1/
√

γ 2 − 1 then σ (K∞) ≤
√

γ 2 − 1

One can get the idea of proof from SISO relation

bP,K ≤
p1+ Ps( jω )K∞( jω )p√

1+ pPs( jω )p2
√

1+ pK∞( jω )p2
.

Denote

σ i = σ (Wi), σ i = σ (Wi), κ i = κ (Wi).

Theorem: Let P be the nominal plant and let K = W1 K∞W2 be
the controller designed by loop shaping. If bPs,K∞ ≥ 1/γ then

σ (K (I + PK )−1) ≤ γ σ (M̃s)σ 1σ 2,
σ ((I + PK )−1) ≤ min{γ σ (M̃s)κ2, 1+γ σ (Ñs)κ2},

σ (K (I + PK )−1P) ≤ min{γ σ (Ñs)κ1, 1+γ σ (M̃s)κ1},

σ ((I + PK )−1P) ≤
γ σ (Ñs)

σ 1σ 2
,

σ ((I + K P)−1) ≤ min{1+γ σ (Ñs)κ1,γ σ (M̃s)κ1},
σ (P(I + K P)−1 K ) ≤ min{1+γ σ (M̃s)κ2,γ σ (Ñs)κ2}

where

σ (Ñs) =

(
σ 2(Ps)

1+σ 2(Ps)

)1/2

σ (M̃s) =

(
1

1+σ 2(Ps)

)1/2
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ν -Gap Metric

δν (P1, P2) =





q(I+P2P∗
2)
− 1

2 (P1−P2)(I+P∗
1 P1)

− 1
2 q∞

if det(I + P∗
2 P1) ,= 0 on jR and

wno det(I+P∗
2 P1) +η(P1) = η(P2),

1 otherwise

where η (η) is the number of closed (open) RHP poles and wno
is winding number.

In scalar case it takes on the particularly simple form

δν (P1, P2) = sup
ω∈R

pP2( jω ) − P1( jω )p√
1+ pP1( jω )p2

√
1+ pP2( jω )p2

whenever the winding number condition is satisfied.

Geometrical interpretation: Distance on the Riemann sphere

Example

Consider
P1(s) =

1
s

, P2(s) =
1

s+ 0.1
.

We had qP1 − P2q∞ = +∞. However

δν (P1, P2) ( 0.09951

which means that the system are, in fact, very close.

Theorem

For any P0, P and K

arcsin bP,K ≥ arcsin bP0,K − arcsinδν (P0, P).

Corollary 1: If bP0,K > δν (P0, P) then (P, K ) is stable.

Corollary 2: For any P0, P, K0 and K

arcsin bP,K ≥ arcsin bP0,K0 − arcsinδν (P0, P) − arcsinδν (K0, K ).

Proof: By Theorem we have

arcsin bP,K0 ≥ arcsin bP0,K0 − arcsinδν (P0, P)
arcsin bP,K ≥ arcsin bP,K0 − arcsinδν (K0, K )

What have we learned today?

◮ H∞ optimization of normalized coprime factors.
◮ Left or right coprime factors - does not matter.
◮ Stability margin bP,K . The larger the better. Relation to

gain and phase margins.
◮ H∞ loop shaping via pre- and postcompensations and

optimization of bP,K .
◮ Robustness in terms of δν -gap
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