
Subdifferentials

Pontus Giselsson

1



Today’s lecture

• subdifferentials and subgradients

• existence of subgradients

• relation between directional derivative and subdifferential

• Fermat’s rule

• subdifferential calculus rules
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Subdifferentials

• let f : Rn → R (not necessarily convex)

• the subdifferential of f at x is the set of vectors s satisfying

f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ Rn (1)

• notation:
• subdifferential: ∂f
• subdifferential at x: ∂f(x) = {s | (1) holds}
• any element s ∈ ∂f(x) is called subgradient of f at x

• subgradients define affine minorizers that coincide with f at x

f(x) + 〈s1, y − x〉
f(x) + 〈s2, y − x〉

f(y)
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Subdifferential example

• consider the following nonconvex function:

2

1
3

• what is the subdifferential at 1? 0

• what is the subdifferential at 2? ∅
• what is the subdifferential at 3? ∅

conclusion:

• subdifferential for nonconvex functions may be empty for some x

4



Subdifferential example

• consider the following convex function:

1

2

3

f(x) = |x|

• what is the subdifferential at 1? -1

• what is the subdifferential at 2? [−1, 1]

• what is the subdifferential at 3? 1

fact:

• for finite-valued convex functions, a subgradient exists for every x
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Extended-valued functions

• let f : Rn → R be convex

• existence of subgradient if x 6∈ dom f?:

• subgradient definition:

f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ Rn

with f(x) =∞, since l.h.s. finite for some y, ∂f(x) = ∅
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Extended-valued functions

• let f : Rn → R be convex

• existence of subgradient for all x ∈ domf?

• counter-example: half-circle

f(x) = −
√
1− x2

dom f = [−1 1]

• “vertical slope” at x = 1 (and x = −1)

• no affine function h with h(1) = 0 minorizes f

fact:

• for convex f subgradient exists for all x ∈ ri domf
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Converse?

• know that subgradient exists for all x ∈ ri dom f if f convex

• is f convex if subgradient exists for all x ∈ ri dom f?might not be

• however: if we restrict ourselves to closed functions we have

a closed function is convex if and only if dom f is
convex and dom ∂f ⊇ ri dom f

• (construct counter-examples in exercises if conditions violated)
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Proof sketch

• consider the function f(x) = |x| with domain [−1, 1)

• construct a function g with domain [−1, 1] that satisfies

g(x) =

{
f(x) if x ∈ [−1, 1)

c else

• if g must be convex, what does c have to satisfy?c ≥ 1

• if g must be closed, what does c have to satisfy?c ≤ 1

• if g closed and convex ⇒ c = 1

• (behavior on boundary controlled by behavior on ri domf)
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Subdifferentials and epigraphs

• it holds that:

s ∈ ∂f(x) if and only if (s,−1) ∈ Nepif (x, f(x))

or equivalently

Nepif (x, f(x)) = {(λs,−λ)| for all s ∈ ∂f(x), λ ≥ 0}

• subdifferentials define non-vertical supporting hyperplanes to epif

f(x) + 〈s, y − x〉

(s,−1)

epi f

(s,−1)

• holds also for nonconvex and extended-valued f
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Proof

• recall definition of normal cone operator to C: s ∈ NC(x) iff

〈s, y − x〉 ≤ 0 for all y ∈ C

• apply to epi f : (s,−1) ∈ Nepi f (x, f(x)) iff

〈(s,−1), (y, r)− (x, f(x))〉 ≤ 0 for all y ∈ Rn, r ≥ f(y)

⇐⇒ r ≥ f(x) + 〈s, y − x〉 for all y ∈ Rn and r ≥ f(y)

⇐⇒ f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ Rn

which is the subgradient definition
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Example

• consider the function f(x) = 1
2x

2 + |x− 2|

epi f

(s,−1) ∂f(x)× {−1}

Nepi f (x)

• the normal vector (s,−1) is in normal cone

• (Nepi f (x, f(x)) = R+(∂f(x)× {−1}))
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Counter-example?

• counter-example?: half-circle

f(x) = −
√
1− x2

dom f = [−1 1]

• normal cone at (1, 0) is

Nepif (1, 0) = {s | s = (s1, s2) with s1 ≥ 0, s2 = 0}

• already now that ∂f(1) = ∅, is this a counter-example?

• No: no element of Nepif (1, 0) cannot be written as (s,−1)
(s,−1) models non-vertical supporting hyperplanes!
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Tangent cone to epigraph

• here we assume that f is finite-valued and convex!

• tangent cone of epigraph is epigraph of directional derivative

Tepi f (x, f(x)) = epi f ′(x, d)

f ′(x, d)
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Alternative representation of tangent cone

• tangent cone is intersection of halfspaces defined by subgradients

Tepi f (x, f(x)) = {(d, r) | 〈(s,−1), (d, r)〉 ≤ 0 for all s ∈ ∂f(x)}

∂f(x)× {−1}

Nepi f (x)
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Relation: Directional derivative and subdifferential

• from previous slide:

Tepi f (x, f(x)) = {(d, r) | 〈(s,−1), (d, r)〉 ≤ 0 for all s ∈ ∂f(x)}

= {(d, r) | 〈s, d〉 ≤ r for all s ∈ ∂f(x)}
= {(d, r) | sup

s∈∂f(x)
〈s, d〉 ≤ r} = epi f ′(x, d)

• therefore the directional derivative satisfies

f ′(x, d) = sup
s∈∂f(x)

〈s, d〉

i.e., it is the support function of the subdifferential

• (for finite-valued convex f : subdifferential can be defined as set
whose support function is the directional derivative)
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Tangent cone to levelsets

• let f : Rn → R be convex and define levelset

Sc(f) = {y | f(y) ≤ c}

• assume that ∃d̄ with f ′(x, d̄) < 0 and that f(x) = c, then

TSc(f)(x) = {d ∈ Rn | f ′(x, d) ≤ 0}

Sc(f)

• tangent cone is directions with non-increasing function values

• (since f(x) = c we look at elements on boundary of levelset)
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Normal cone to levelsets

• let f : Rn → R be convex and define levelset

Sc(f) = {y | f(y) ≤ c}

• assume that ∃x̄ with f(x̄) < c and that f(x) = c, then

NSc(f)(x) = R+∂f(x)

Sc(f)

• proven by showing that (TSc(f)(x)) = (R+∂f(x))◦
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Are assumptions necessary?

• are the assumptions

∃x̄ with f(x̄) < f(c) and ∃d̄ with f ′(x, d̄) < 0

necessary for the set equalities

NSc(f)(x) = R+∂f(x) and TSc(f)(x) = {d ∈ Rn | f ′(x, d) ≤ 0}?

• consider f = 1
2‖ · ‖

2 and the levelset

S0(f) = {x | f(x) ≤ 0} = {x | 1
2‖x‖

2 ≤ 0} = {0}

• what is normal cone of S0(f) at x = 0?: Rn

• what is the subdifferential at x = 0?: ∂f(0) = {0}
• what is the tangent cone of S0(f) at x = 0?: polar normal, i.e.,
{0}

• what is the set of d with nonpositive directional derivative at
x = 0?: Rn
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Example

• f is finite, infx f(x) < f(x) = c, ∂f(x) = {∇f(x)}
• compute the normal cone and tangent cone operator of Sc(f)

• normal cone:
NSc(f)(x) = R+{∇f(x)} = {s | s = λ∇f(x), λ ≥ 0}

• tangent cone: polar to NSc(f)(x) is TSc(f)(x) = {d | 〈v, d〉 ≤ 0}

s

NSc(f)(x)

TSc(f)(x)

• (dashed curve is potential level curve)

• (gradient points “outwards” from level curve)
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Relation between normal cones

• normal cone to level set of f , i.e., Sc(f):

Sc(f)

• normal cone to epi f , i.e., Nepi f :

(note dim epi f = dim Sc(f) + 1)
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Relation to gradient

• if f differentiable at x and ∂f(x) 6= ∅ then ∂f(x) = {∇f(x)}

f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all y ∈ Rn

• if f differentiable and convex, then ∂f(x) = {∇f(x)} for all x

• a function can be differentiable at x but ∂f(x) = ∅, e.g., “2”,”3”:

2

1
3

• gradient is a local concept, subdifferential is a global property

• however, for convex functions gradient gives global
under-estimator (since ∂f(x) = {∇f(x)})
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Example – Subdifferentials as lower bounds

• f convex, f(−1) = 1, ∂f(−1) = {−1}, f(1) = 1 and
∂f(1) = {1}

• compute a lower bound to the optimal value of f

• we know that optimal value of f is ≥ 0

−y

(−1,−1) (1,−1)

y

(0, 0)
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Construct function from subdifferential

• we have the following subdifferential

• draw the corresponding function and find the optimal point

(linear to the left and quadratic to the right)

(no axes since any constant can be added)
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Fermat’s rule

• Let f be proper, then x minimizes f if and only if

0 ∈ ∂f(x)

• proof: x minimizes f iff

f(y) ≥ f(x) + 〈0, y − x〉 for all y ∈ Rn

which by definition of subdifferential is equivalent to 0 ∈ ∂f(x)

• holds also for nonconvex functions
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Example of Fermat’s rule

• Fermat’s rule holds also for nonconvex functions:

(0,-1)

1
2

• ∂f(”1”) = 0

• ∂f(”2”) = ∅
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Examples of Fermat’s rule

• (a): ∂f(x), (b): ∂g(y), does x resp. y optimize f resp. g?

(a) (b)

• if convex, can we conclude existence of optimal point in (b)? No!

• draw an example of a corresponding function
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Subdifferential calculus rules

• how to compute ∂(f1 + f2)(x)?

• how to compute ∂(g ◦ L)(x)?

• how to compute ∂(Lg)(x)?
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Subdifferential sum

• if x ∈ dom∂f1 ∩ dom∂f2, we have

∂(f1 + f2)(x) ⊇ ∂f1(x) + ∂f2(x)

• proof:
let s1 ∈ ∂f1(x) and s2 ∈ ∂f2(x), add subdifferential definition:

f1(y) + f2(y) ≥ f1(x) + f2(x) + 〈s1 + s2, y − x〉

i.e. s1 + s2 ∈ ∂(f1 + f2)(x)

• under additional assumptions, we also have reverse inclusion, i.e.,

∂(f1 + f2) ⊆ ∂f1 + ∂f2

(will be shown after conjugate functions introduced)
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Composition

• let L be a linear operator

• if Lx ∈ domg we have

∂(g ◦ L)(x) ⊇ L∗∂g(Lx)

• under additional assumptions also other inclusion holds
(will be shown after conjugate functions)

• if f differentiable, we have chain rule

∇(g ◦ L)(x) = L∗∇g(Lx)
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Image function

• assume that x ∈ dom(Lg) = L(domg) and suppose that there
exists ȳ such that Lȳ = x and g(ȳ) = (Lg)(x), then

∂(Lg)(x) = {s ∈ Rn | L∗s ∈ ∂g(ȳ)}

• will be shown after conjugate functions
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