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Today’s lecture

forward step operators

gradient step operators (subclass of forward step operators)
resolvents

proximal operators (subclass of resolvents)

reflected resolvents

reflected proximal operators (or proximal reflectors)



Forward step operator

e suppose that 7" : R” — R" is single-valued
e the forward step operator is (Id —4T)



Cocoercivity

suppose that T is %—cocoercive with 8 = 35

then Id — 4T with v = 3 is a-averaged, decide a:

8 B 1

1.5 —1.5

T —~T Id —~T

T is 2-cocoercive & ~T' is g—cocoercwe
& (Id —~T) is 3-averaged

generally: suppose v € (0, B)

then:

B

cocoercivity of T' < %—averagedness of (Id —~T)



Iterating the forward step operator

e since %—cocoercivity of T & %—averagedness of (Id —~T)

e iterating 751 = (Id — yT)x* converges to fixed-point (if exists)
o (ify€(0,2))



Lipschitz continuity

e suppose that T is 3-Lipschitz and v = 1
e motivate that Id — 47 is not averaged

0. 0. 1.5

~T —~T Id —~T

e cannot make Id — «T nonexpansive independent of

e iterating forward step of Lipschitz T not guaranteed to converge



Gradient step operator

suppose that f : R™ — R is differentiable

the forward step becomes the gradient step operator of f
I—AVf
if f (proper closed and) convex, then

-cocoercivity of V f < (-Lipschitz continuity of V f
& [-smoothness of f

if fis B-smooth, the gradient method converges for v € (0,

2" = (Id — 4V f)zF

(since V f g-cocoercive)
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Stronger properties

assume f is S-smooth and o-strongly convex
then v f is y3-smooth and yo-strongly convex
then vf — 22| - ||* is fy(ﬂ o)-smooth
orYVf —~old is 'y(ﬁ ) cocoercive

(Id — vV f) is é-Lipschitz, decide &

1—75 1—~vo
B—o) :E
YV f —~old Id—~Vf

(Id — ~T) is max(y8 — 1,1 — vo)-Lipschitz
contractive if l —yo < landy8—1< 1, ie., v € (0, 5)
k+1 _

= (Id — T)x* then converges linearly

optimal v (center circle) given by v = B+cr == ﬁ?gﬁ

gradient method =




Summary: Gradient step operator

o>0:

1—~6 1—~vo

Id —~Vf

e ve (0, %) = contractive

: _ 2

optimal v = 57, = factor
—1

Bt (=18 -1=1-70)

c=0:
1—~B

Id —~yVf

o v=2a/B,a € (0,1)
=1—-96=1-2«
= (Id — vV f) a-averaged



Resolvent

resolvent J4 : D — R"™ to monotone operator is defined as
Ja=(Id+A)~*

due to Minty, if A maximally monotone, then D = R"™
(dom(Id + A1) = ran(Id + A) = R™ iff A maximally monotone)

this is important for algorithms involving resolvent

we will consider resolvents to maximally monotone operators
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Properties of resolvent

assume A is o-strongly monotone (o = 0 implies monotone)
Id + A is (1 + o)-strongly monotone

(Az — Ay + (z —y),o —y) 2 olle —y|* + o =y = (L + o) 2 -yl

properties of J4 = (Id + A)~1?
Ja = (Id+ A)~1is (1 + o)-cocoercive

o=0: Jyis §—averaged (or 1-cocoercive or firmly nonexpansive)
o>0: Jyis 1+ -contractive

(iteration of the resolvent converges to a fixed-point, if exists)
note: resolvent is single-valued
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Lipschitz continuity

e assume A is S-Lipschitz continuous, then
2(Jax — Jay,x —y) > |lz = y[* + (1 = 62)[[ Jaz — Jay|®
(besides being 1-cocoercive)

proof sketch:

o A+ pBId is %—cocoercive

e dotted: Ax — Ay
o gray: (BId+ A)z — (BId + A)y
e using fId = Id + (8 — 1)Id, the definition of a cocoercive
operator, and the definition of the inverse, gives the result
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Graphical representation

e assume A is 1-Lipschitz continuous

e then (besides being 1-cocoercive) Jy is %—strongly monotone

e l-cocoercivity: Jax — Jay in dotted region
. %—strong monotonicity: Jax — J4y to the right of dashed line
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Lipschitz continuity and strong monotonicity

let A be 1-Lipschitz and o-strongly monotone (with 0 < o < 1)

o-strong monotonicity of A = (1 + o)-cocoercivity of J4

1-Lipschitz continuity of A = %-strong monotonicity of J4

e intersect regions to find region when both properties are present
|

e Jax — Jay ends up in gray region
e (0 =4 and B =1 in figure)
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Proximal operators

assume f is proper closed and convex

then 0 f maximally monotone

let A= 0f, then:

Ja(z) = arginin{f(:zr) + iz — 2|} = prox(z)

where prox is called prox operator

proof: = = prox(z) if and only if

t e

¢

0Oedf(x)+z—=2
zedf(x)+x
ze€ (Id+0f)x
r=(Id+0f)" 'z
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Proximal operator characterization

o the proximal operator satisfies
prox; = VA

where h = f + 1| - ||?
o why?

e h is proper closed and convex, and O0h = 9f + Id
e therefore Vh* = (0h)™' = (Of +1d)™" = Joy

e can this be used to derive tighter properties of Jgs?
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Proximal operator properties

e we have prox;(z) = Vh*(z) where h = f + || - ||?
e recall equivalent dual properties
(i) f is o-strongly convex
(ii) Of is o-strongly monotone
(iii) Vf* is a -cocoercive
(iv) Vf* is Z-Lipschitz continuous
(v) f*is ;—smooth
e assume f is o-strongly convex = h is (1 4 o)-strongly convex
= Vh* = prox; is (1 + o)-cocoercive
(same as in general case)
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Lipschitz continuity

let b= f+ 3| -2 ie prox; = Vh*

assume that f is 8-smooth and o-strongly convex 0 < o < j3
then his (8 + ) smooth and (o + 1)-strongly convex
therefore h* is m -strongly convex and #—smooth

and h* — 2(1+/3)|| 1% s (5 — 1_%) smooth

finally Vh* — mld is %—cocoercive (if 8> 0)

Vh* — —1Id = prox; — 551d |n5|de dashed circle

1+8 1+/3
Vh* = prox; in gray area (shift by 15 Id)
e (figurehas f =1 and 0 = 2)
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Comparison

e assume A is a maximal monotone operator and that f is PCC
e assume that A and Jf are 1-Lipschitz
e J4 and prox; end up in darker and lighter gray area respectively

xy

e conclusion: under Lipschitz assumptions, the resolvent of
subdifferentials are confined to smaller regions
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Proximal operator for separable functions

e consider a separable function g(z) = Y_i" | gi(z;)
e the prox is also separable:

prox, (2) = argmin{g(z) + 5[l — 2[|*}
’ n n
= argmin{z 9i(x;) + 3 Z(xz —2)?}
¢ i=1 i=1
argmin,, {g1(z1) + 3(z1 — 21)*}

argmin% {gn(wn) + %(mn - Zn)Q}

e cheap evaluation = good to have in algorithms

20



Separability and compositions

assume that g is separable, i.e., g(z) = Y7 gi(z;)
let h = g o L where L is arbitrary linear operator

the prox becomes
prox;, (=) = argmin{h(z) + §[lz - 2|*}
x

= argmin{g(Lz) + 5|z — 2||*}

separability is lost in general
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Moreau’s identity

the following relation holds between the prox of f and f*
prox; + prox . = Id
when f scaled by v, we have
Prox., s + ProX(, sy« = ProX., s + Yprox,—is. o v 1d =1d
when f composed with L, we have
ProX,(for)(2) =z = vL" "

where
p € Argmin{f*(p) + | L*p — v "2|*}
o

(assuming that the Argmin is nonempty)
these identities are very useful!
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Reflected resolvent

o the reflected resolvent R4 to a monotone operator A is defined as
Rp:=2J4—1d

e it gives the reflection point (therefore its name)
RAm

o if A= 0f then reflected proximal operator given by
Ry = 2prox; —Id

(sometimes denoted rprox; or Iy)
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Properties of reflected resolvent

e in the general case, A monotone
o reflected resolvent R4 is S-Lipschitz, what is 87

e 5 =1, ie., R4 is nonexpansive
“proof”:

1.

Jax — Jay within dashed region (since Ja 1-cocoercive in general
case)

2Jaxz — Jay within dotted region (multiply by 2)

(2Ja —Id)z — (2Ja —1d)y = (2Jaz — 2Jay) — (z — y) in gray
area (shift by —Id)

24



Further properties of reflected resolvent

e properties of R4 obtained by multiplying resolvent (J4) area by 2
(radially) and shifting with —Id

e examples: A = 0f is f-smooth and o-strongly monotone

§=coro =1 f=10=0

o left: negatively averaged, middle: averaged, right: contractive

e (fairly easy to visualize, can be harder to prove)
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More properties of reflected proximal operator

e assume V f is o-strongly monotone and (-Lipschitz
e then prox,; — 7-51d is ————-cocoercive (if 3 > o)
1+yo ~ 1+78

e it can be shown that R, is max (i;zg, ?f_;é)—contractive

e contraction factor optimized for v = NG

M*l)

(gives a contraction factor of
Bla+1
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A reflected resolvent identity

e assume that A is a maximally monotone operator and v € (0, 00)

e then
R»YA(Id + ’}/A) =1d - ’)/A
e proof

Roa(Id +~A) = 2(Id + vA) 1 (Id + vA) — (Id + yA)
=2Id — (Id + vA)
= (Id —~A)

where second step holds since (Id +~A)~! = .J, 4 is single-valued
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