Operators

Pontus Giselsson

Today's lecture

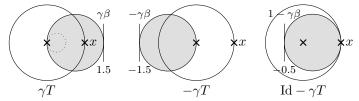
- forward step operators
- gradient step operators (subclass of forward step operators)
- resolvents
- proximal operators (subclass of resolvents)
- reflected resolvents
- reflected proximal operators (or proximal reflectors)

Forward step operator

- suppose that $T: \mathbb{R}^n \to \mathbb{R}^n$ is single-valued
- the forward step operator is $(\mathrm{Id} \gamma T)$

Cocoercivity

- suppose that T is $\frac{1}{\beta}$ -cocoercive with $\beta = \frac{1}{2}$
- then $\operatorname{Id} \gamma T$ with $\gamma = 3$ is α -averaged, decide α :



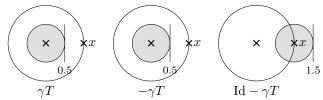
- T is 2-cocoercive $\Leftrightarrow \gamma T$ is $\frac{2}{3}$ -cocoercive $\Leftrightarrow (\mathrm{Id} \gamma T)$ is $\frac{3}{4}$ -averaged
- generally: suppose $\gamma \in (0, \frac{2}{\beta})$
- then: $\frac{1}{\beta}\text{-}\mathsf{cocoercivity}$ of $T\Leftrightarrow \frac{\gamma\beta}{2}\text{-}\mathsf{averagedness}$ of $(\mathrm{Id}-\gamma T)$

Iterating the forward step operator

- since $\frac{1}{\beta}$ -cocoercivity of $T \Leftrightarrow \frac{\gamma\beta}{2}$ -averagedness of $(\mathrm{Id} \gamma T)$
- iterating $x^{k+1} = (\mathrm{Id} \gamma T) x^k$ converges to fixed-point (if exists)
- (if $\gamma \in (0, \frac{2}{\beta})$)

Lipschitz continuity

- suppose that T is $\frac{1}{2}$ -Lipschitz and $\gamma = 1$
- motivate that $\mathrm{Id}-\gamma T$ is not averaged



- cannot make $\mathrm{Id} \gamma T$ nonexpansive independent of γ
- iterating forward step of Lipschitz ${\cal T}$ not guaranteed to converge

Gradient step operator

- suppose that $f~:~\mathbb{R}^n \rightarrow \mathbb{R}$ is differentiable
- the forward step becomes the gradient step operator of \boldsymbol{f}

$$I - \gamma \nabla f$$

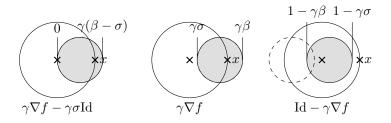
- if f (proper closed and) convex, then $\frac{1}{\beta}$ -cocoercivity of $\nabla f \Leftrightarrow \beta$ -Lipschitz continuity of ∇f $\Leftrightarrow \beta$ -smoothness of f
- if f is β -smooth, the gradient method converges for $\gamma \in (0, \frac{2}{\beta})$

$$x^{k+1} = (\mathrm{Id} - \gamma \nabla f) x^k$$

(since $\nabla f \frac{1}{\beta}$ -cocoercive)

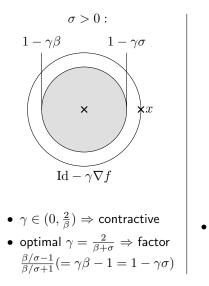
Stronger properties

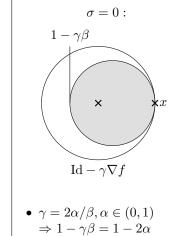
- assume f is $\beta\text{-smooth}$ and $\sigma\text{-strongly convex}$
- then γf is $\gamma\beta\text{-smooth}$ and $\gamma\sigma\text{-strongly convex}$
- then $\gamma f \frac{\gamma \sigma}{2} \| \cdot \|^2$ is $\gamma(\beta \sigma)$ -smooth
- or $\gamma \nabla f \gamma \sigma Id$ is $\frac{1}{\gamma(\beta \sigma)}$ -cocoercive
- $(\mathrm{Id} \gamma \nabla f)$ is δ -Lipschitz, decide δ



- $(\mathrm{Id} \gamma T)$ is $\max(\gamma \beta 1, 1 \gamma \sigma)$ -Lipschitz
- contractive if $1 \gamma \sigma < 1$ and $\gamma \beta 1 < 1$, i.e., $\gamma \in (0, \frac{2}{\beta})$
- gradient method $x^{k+1} = (\mathrm{Id} \gamma T)x^k$ then converges linearly
- optimal γ (center circle) given by $\gamma = \frac{2}{\beta + \sigma} \Rightarrow \delta = \frac{\beta/\sigma 1}{\beta/\sigma + 1}$

Summary: Gradient step operator





 $\Rightarrow (\mathrm{Id} - \gamma \nabla f) \ \alpha \text{-averaged}$

Resolvent

• resolvent $J_A : \mathcal{D} \to \mathbb{R}^n$ to monotone operator is defined as

$$J_A = (\mathrm{Id} + A)^{-1}$$

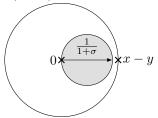
- due to Minty, if A maximally monotone, then $\mathcal{D} = \mathbb{R}^n$ $(\operatorname{dom}(\operatorname{Id} + A^{-1}) = \operatorname{ran}(\operatorname{Id} + A) = \mathbb{R}^n$ iff A maximally monotone)
- this is important for algorithms involving resolvent
- we will consider resolvents to maximally monotone operators

Properties of resolvent

- assume A is σ -strongly monotone ($\sigma = 0$ implies monotone)
- Id + A is $(1 + \sigma)$ -strongly monotone

 $\langle Ax - Ay + (x - y), x - y \rangle \ge \sigma \|x - y\|^2 + \|x - y\|^2 = (1 + \sigma)\|x - y\|^2$

- properties of $J_A = (\mathrm{Id} + A)^{-1}$?
- $J_A = (\mathrm{Id} + A)^{-1}$ is $(1 + \sigma)$ -cocoercive



- $\sigma = 0$: J_A is $\frac{1}{2}$ -averaged (or 1-cocoercive or firmly nonexpansive)
- $\sigma > 0$: J_A is $\frac{-1}{1+\sigma}$ -contractive
- (iteration of the resolvent converges to a fixed-point, if exists)
- note: resolvent is single-valued

Lipschitz continuity

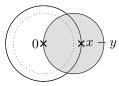
- assume A is $\beta\text{-Lipschitz}$ continuous, then

 $2\langle J_A x - J_A y, x - y \rangle \ge \|x - y\|^2 + (1 - \beta^2) \|J_A x - J_A y\|^2$

(besides being 1-cocoercive)

proof sketch:

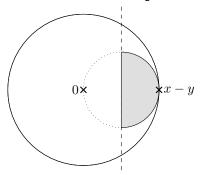
• $A + \beta \text{Id is } \frac{1}{2\beta}$ -cocoercive



- dotted: Ax Ay
- gray: $(\beta \operatorname{Id} + A)x (\beta \operatorname{Id} + A)y$
- using $\beta Id = Id + (\beta 1)Id$, the definition of a cocoercive operator, and the definition of the inverse, gives the result

Graphical representation

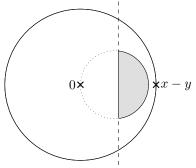
- assume A is 1-Lipschitz continuous
- then (besides being 1-cocoercive) J_A is $\frac{1}{2}$ -strongly monotone



- 1-cocoercivity: $J_A x J_A y$ in dotted region
- $\frac{1}{2}$ -strong monotonicity: $J_A x J_A y$ to the right of dashed line

Lipschitz continuity and strong monotonicity

- let A be 1-Lipschitz and σ -strongly monotone (with $0 \le \sigma < 1$)
- σ -strong monotonicity of $A \Rightarrow (1 + \sigma)$ -cocoercivity of J_A
- 1-Lipschitz continuity of $A \Rightarrow \frac{1}{2}$ -strong monotonicity of J_A
- intersect regions to find region when both properties are present



- $J_A x J_A y$ ends up in gray region
- $(\sigma = \frac{1}{9} \text{ and } \beta = 1 \text{ in figure})$

Proximal operators

- $\bullet\,$ assume f is proper closed and convex
- then ∂f maximally monotone
- let $A = \partial f$, then:

$$J_A(z) = \underset{x}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2} ||x - z||^2 \right\} =: \operatorname{prox}_f(z)$$

where $prox_f$ is called prox operator

• proof: $x = \text{prox}_f(z)$ if and only if

$$\begin{array}{ll} 0 \in \partial f(x) + x - z \\ \Leftrightarrow & z \in \partial f(x) + x \\ \Leftrightarrow & z \in (\mathrm{Id} + \partial f)x \\ \Leftrightarrow & x = (\mathrm{Id} + \partial f)^{-1}z \end{array}$$

Proximal operator characterization

• the proximal operator satisfies

$$\operatorname{prox}_f = \nabla h^*$$

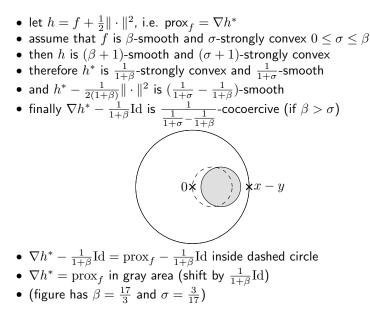
where
$$h = f + \frac{1}{2} \| \cdot \|^2$$

- why?
 - h is proper closed and convex, and $\partial h = \partial f + \mathrm{Id}$
 - therefore $\nabla h^* = (\partial h)^{-1} = (\partial f + \mathrm{Id})^{-1} = J_{\partial f}$
- can this be used to derive tighter properties of $J_{\partial f}$?

Proximal operator properties

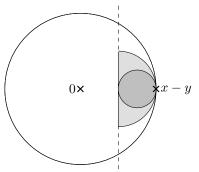
- we have $\operatorname{prox}_f(z) = \nabla h^*(z)$ where $h = f + \frac{1}{2} \| \cdot \|^2$
- recall equivalent dual properties
 - (i) f is σ -strongly convex
 - (ii) ∂f is σ -strongly monotone
 - (iii) ∇f^* is σ -cocoercive
 - (iv) ∇f^* is $\frac{1}{\sigma}$ -Lipschitz continuous
 - (v) f^* is $\frac{1}{\sigma}$ -smooth
- assume f is σ -strongly convex $\Rightarrow h$ is $(1 + \sigma)$ -strongly convex $\Rightarrow \nabla h^* = \operatorname{prox}_f$ is $(1 + \sigma)$ -cocoercive (same as in general case)

Lipschitz continuity



Comparison

- assume A is a maximal monotone operator and that f is PCC
- assume that A and ∂f are 1-Lipschitz
- J_A and prox_f end up in darker and lighter gray area respectively



• **conclusion**: under Lipschitz assumptions, the resolvent of subdifferentials are confined to smaller regions

Proximal operator for separable functions

- consider a separable function $g(x) = \sum_{i=1}^{n} g_i(x_i)$
- the prox is also separable:

$$\begin{aligned} \operatorname{prox}_{g}(z) &= \operatorname*{argmin}_{x} \{g(x) + \frac{1}{2} \|x - z\|^{2} \} \\ &= \operatorname*{argmin}_{x} \{\sum_{i=1}^{n} g_{i}(x_{i}) + \frac{1}{2} \sum_{i=1}^{n} (x_{i} - z_{i})^{2} \} \\ &= \begin{bmatrix} \operatorname{argmin}_{x_{1}} \{g_{1}(x_{1}) + \frac{1}{2}(x_{1} - z_{1})^{2} \} \\ &\ddots \\ \operatorname{argmin}_{x_{n}} \{g_{n}(x_{n}) + \frac{1}{2}(x_{n} - z_{n})^{2} \} \end{bmatrix} \end{aligned}$$

- cheap evaluation \Rightarrow good to have in algorithms

Separability and compositions

- assume that g is separable, i.e., $g(x) = \sum_{i=1}^n g_i(x_i)$
- let $h = g \circ L$ where L is arbitrary linear operator
- the prox becomes

$$prox_h(z) = \underset{x}{\operatorname{argmin}} \{h(x) + \frac{1}{2} ||x - z||^2 \}$$
$$= \underset{x}{\operatorname{argmin}} \{g(Lx) + \frac{1}{2} ||x - z||^2 \}$$

• separability is lost in general

Moreau's identity

- the following relation holds between the prox of f and f^{\ast}

$$\operatorname{prox}_f + \operatorname{prox}_{f^*} = \operatorname{Id}$$

• when f scaled by γ , we have

$$\mathrm{prox}_{\gamma f} + \mathrm{prox}_{(\gamma f)^*} = \mathrm{prox}_{\gamma f} + \gamma \mathrm{prox}_{\gamma^{-1} f^*} \circ \gamma^{-1} \mathrm{Id} = \mathrm{Id}$$

• when f composed with L, we have

$$\mathrm{prox}_{\gamma(f\circ L)}(z)=z-\gamma L^*\mu^*$$

where

$$\mu^* \in \operatorname*{Argmin}_{\mu} \{ f^*(\mu) + \frac{\gamma}{2} \| L^* \mu - \gamma^{-1} z \|^2 \}$$

(assuming that the Argmin is nonempty)

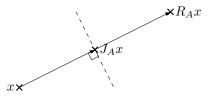
• these identities are very useful!

Reflected resolvent

• the reflected resolvent R_A to a monotone operator A is defined as

$$R_A := 2J_A - \mathrm{Id}$$

• it gives the reflection point (therefore its name)



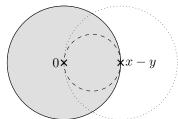
• if $A = \partial f$ then *reflected proximal operator* given by

$$R_{\partial f} = 2 \operatorname{prox}_f - \operatorname{Id}$$

(sometimes denoted rprox_f or R_f)

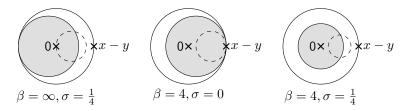
Properties of reflected resolvent

- in the general case, A monotone
- reflected resolvent R_A is β -Lipschitz, what is β ?
- $\beta = 1$, i.e., R_A is nonexpansive "proof":
 - 1. $J_A x J_A y$ within dashed region (since J_A 1-cocoercive in general case)
 - 2. $2J_Ax J_Ay$ within dotted region (multiply by 2)
 - 3. $(2J_A \mathrm{Id})x (2J_A \mathrm{Id})y = (2J_Ax 2J_Ay) (x y)$ in gray area (shift by $-\mathrm{Id}$)



Further properties of reflected resolvent

- properties of R_A obtained by multiplying resolvent (J_A) area by 2 (radially) and shifting with -Id
- examples: $A = \partial f$ is β -smooth and σ -strongly monotone



- left: negatively averaged, middle: averaged, right: contractive
- (fairly easy to visualize, can be harder to prove)

More properties of reflected proximal operator

• assume ∇f is σ -strongly monotone and β -Lipschitz • then $\operatorname{prox}_{\gamma f} - \frac{1}{1+\gamma\beta} \operatorname{Id}$ is $\frac{1}{\frac{1}{1+\gamma\sigma} - \frac{1}{1+\gamma\beta}}$ -coccercive (if $\beta > \sigma$) • it can be shown that $R_{\gamma f}$ is $\max\left(\frac{1-\gamma\sigma}{1+\gamma\sigma}, \frac{\gamma\beta-1}{1+\gamma\beta}\right)$ -contractive fix $R_{\gamma f} \times \begin{pmatrix} r \\ r \\ r \\ r \end{pmatrix} \times x \end{pmatrix}$

• contraction factor optimized for $\gamma = \frac{1}{\sqrt{\sigma\beta}}$ (gives a contraction factor of $\frac{\sqrt{\beta/\sigma}-1}{\sqrt{\beta/\sigma}+1}$)

A reflected resolvent identity

- assume that A is a maximally monotone operator and $\gamma \in (0,\infty)$
- then

$$R_{\gamma A}(\mathrm{Id} + \gamma A) = \mathrm{Id} - \gamma A$$

• proof

$$R_{\gamma A}(\mathrm{Id} + \gamma A) = 2(\mathrm{Id} + \gamma A)^{-1}(\mathrm{Id} + \gamma A) - (\mathrm{Id} + \gamma A)$$
$$= 2\mathrm{Id} - (\mathrm{Id} + \gamma A)$$
$$= (\mathrm{Id} - \gamma A)$$

where second step holds since $(Id + \gamma A)^{-1} = J_{\gamma A}$ is single-valued