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Today’s lecture

e properties of set-valued operators:
e monotonicity
e maximal monotonicity
e strong monotonicity
e properties of single-valued operators
e Lipschitz continuity (contractiveness, nonexpansiveness)
e averagedness
® cocoercivity



Power set

the power set of the set X is the set of all subsets of X.
our notation: 2%

e background: if number of elements in X is finite (n), then
number of elements in the power set is 2"

other notations exist: P(X), §2(X), etc

example:

we have: X; € 2%, X, € 2%, X3 € 2% e 2%, X € 2¥



Operators

an operator A : R” — 28" maps each point in R" to a set in R”
called set-valued operator
Az (or A(x)) means A operates on z (and gives a set back)

if Ax is a singleton for all x € R™, then A single-valued
e can construct T : R™ — R™ with {T'z} = Ax for all z € R"
o with slight abuse of notation, we treat these to be the same
examples:

o the subdifferential operator Of is a set-valued operator
o the gradient operator V f is a single-valued operator



Graphical representation

e a set-valued operator A : R™ — 2R"

e depending on where the set Ax is, A has different properties



Graph

e the graph of an operator A : R® — 28" s defined as

gphA = {(z,y) | y € Az}

e the graph consists of all pairs of points (x,y) such that y € Ax
e gphA is a set, it is a subset of R” x R"”, i.e., gphA C R™ x R™



Special operators

e the identity operator is denoted Id and is defined as
x = Id(x)
e inverse of an operator, defined through its graph:
gphA™" = {(y,2) | (z,y) € gphA}

(therefore y € Az if and only if z € A~ 1y)



Graphical representation — Inverse operators

we have the following equivalence
yeAzx & zxeAly

therefore y € A(A~'y) and x € A~ (Ax)

A and A~ are each others images under mapping (z,%) — (y, x)
example: A in figure, draw A1

€T

y € Ax

zeAly



Monotone operators

e an operator A : R” — 28" is monotone if
(w—v,e—y) >0

for all (z,u) € gphA and (y,v) € gphA
e graphical representation

then u — v in gray area (since scalar product positive)
(or set Az — Ay in gray area)



Monotonicity 1D

e which of the following operators A : R — 2% are monotone?
’ ‘ / (b)\l\
I T

(a) and (¢): (y — 2 > 0 implies v — u > 0 for (z,u), (y,v) € gph(A))
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Examples of monotone mappings

e the subdifferential Of of f : R* = R
e proof: let u € df(z) and v € df(y) and subdifferential definitions

f(@) + (u,y — z)
fly) + v,z —y)

to get that
(u—v,z—y) >0

holds for all (z,u), (y,v) € gphdf
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Examples of monotone mappings

e a (linear) skew-symmetric mapping (i.e., A = —A*)
e proof:
(Az — Ay, x —y) = (z —y, A" (z —y)) = —(x —y, Az — y))
=—(A@—-y),z—y) =0

e graphical representation:

then Az — Ay on thick black line
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Examples of monotone mappings

e rotation Ry : R? — R? with |§] <
e proof: let z =2 —y

(Rox — Roy,x —y) = (Rpz,2) = < {COSG —sm 0} z, z>

sinf  cosf
/[ |#1cosf — zsinf
"\ |z18in0 + 25 cos O

jus
2

],z> = 22 cosf + 22 cosf > 0

e graphical representation

then Ry(xz — y) on thick semi-circle (depending on 6)
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Maximal monotonicity

e let A:R™ — 28" be monotone
e A is maximal monotone if no pair (Z,%) & gphA exists such that

(t—u,z—x)>0

for all (z,u) € gphA
e equivalently: no monotone operator B exists with gphA C gphB
(strict subset)

14



Graphical interpretation

e which of the following A : R — 2% are maximal monotone?

A

A
VTS

O

e (b) and (c) are maximally monotone
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Minty’s theorem

e let A:R" — 2%" be monotone
e A is maximal monotone iff ran(A + ald) = R™ with a > 0
e shifted previous figures with 0.2Id (and re-scaled):

(2) (b)
7

e “holes” in horizontal regions give holes in range due to +ald
e “holes” in nonhorizontal regions give holes in range due to +ald
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Strongly monotone operators
e an operator A is o-strongly monotone if

(w=v,2—y)>olz-y|?

for all (z,u) € gphA and (y,v) € gphA
e 2D-graphical representation

0x z—y

g

then u — v in gray area (or complete set Ax — Ay)
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1D Graphical interpretation

strong monotonicity (u — v,z —y) > ||z — y||* (¢ > 0)
which of the following are strongly monotone?

T
AT

(b): ((u—v) >0z —y))
that is, slope is at least o
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Examples of strongly monotone operators

e assume that f is proper closed and o-strongly convex
e then Jf is o-strongly monotone

e proof:

assumption equivalent to that g = f — || - ||
therefore f =g+ 5| - |17

since g convex, Of = 9g + old and dg(z) = Of(x) — ox
therefore, subgradients of g satisfy

2 is convex

g(y) > g(z) + (u — oz, y — 2)
g(z) > g(y) + (v —oy,z —y)

where u € 9f(z) and v € df(y)
e add to get

0> (u—ow,y—a)+(v—oyz—y)
and rearrange to get

(w—v,z—y) > olle—y|



Examples of strongly monotone operators

e rotation operator Ry with || < 7 (from before)
(Row — Roy, —y) > cosOja — y]|?

® Ry is cos f-strongly monotone

e graphical representation (6 = %)
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Single-valued operators

so far, have considered set-valued operators A : R™ — oR™

e monotonicity
e maximal monotonicity
e strong monotonicity

now, we will consider single-valued operators T': D — R"

we assume that D C R” is nonempty

if D =R", then T has full domain

a fixed-point y to the operator 7' : R™ — R" satisfies y =Ty
the set of fixed-points to T : R™ — R" is denoted fixT'
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Lipschitz continuous operator

e an operator T': D — R™ is §-Lipschitz continuous if
[Tz — Ty < Bllz -yl

holds for all z,y € D
e T is single-valued (show by letting y = = and use contradiction)
e graphical representation

then Tx — Ty is in gray area
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Alternative graphical representation

e assume T has a fixed point Z = T'Z then

[Te —zf| = | Tz - Tz| < fllw -z

then T'x in gray area
e interpretation: [ relates to distance to fixed-point
e 5 < 1: contractive
e 3 =1 : nonexpansive
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Examples of Lipschitz continuous mappings

e a rotation is 1-Lipschitz continuous (nonexpansive)
e a linear mapping T': D — R™ is ||T||-Lipschitz continuous since

[Tz =Tyl = Tz = )| <[ITlllz -yl

by Cauchy-Schwarz inequality

e compositions: assume that 77,75 : D — R™ are (31, B2-Lipschitz,

then T1T5 is 31 B2-Lipschitz

T Tex — T Toy|| < B1|Ter — Tayll < BiB2llz -yl
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Iterating a contractive operator

e a contractive (8 < 1) operator T" has a unique fixed-point Z

e the iteration 21

lz*** — 2| = | Ta" - Tz| < g]|a* - z|
=BTt = Tzl < - < B |2® - 2

= Tz* converges linearly to the fixed-point (Z):
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Fixed-points of nonexpansive operator

a nonexpansive operator 7' need not have a fixed-point

example: Tx = x + 2
Tr=z+2==x

does not hold for any z € R

it is nonexpansive (1-Lipschitz continuous)
[Tz =Tyl = |z +2 -y =2l = [z -yl

iteration zFt1 = TzF:
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Iteration of nonexpansive operator

k

o if fixed-point Z exists, iteration z**! = T2* must not converge

e example: rotation by 25°

(however, the iterates are bounded)
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Averaged operators

e let @ € (0,1) and R : D — R™ be some nonexpansive operator

e an operator T': D — R" is a-averaged if:
T=(1-a)ld+aR

e graphical representation for o = %:

r—=y r—=y r—=y

Rx — Ry aRz — aRy Tx—Ty

e draw similar figures for a = 0.25 and o = 0.75
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Averaged operators

o T, is a-averaged with oo = 0.25,0.5,0.75
e graphical representation:

M

O - TO.25 O - TO‘B O - T0‘75
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Fixed-points

e assume that fixR is nonempty and that o € (0, 1)
e the fixed-points of 7' = (1 — o)Id + aR and R coincide
e proof:

e a fixed point T to R is a fixed-point to 7"

Tt=(1-a)z+aRz=1-a+a)T =2
e a fixed-point T to 7T is a fixed-point to R:
Rz=1(T+(a-Ddz=L1+a-1)z=2

(where R = LT — 1=21d is used)
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Additional graphical representation

e assume that T, is a-averaged and that = € fixTy,
e then T, for = 0.25,0.5,0.75 can be represented as:

previous new

O-Toys O-Tos O-Tyrs
o why?
o figure on left holds for all y
e let y be a fixed-point, i.e., y =T
o shift left figure by y = T to get right figure:
0=z, 22— Tar —TaZ — Tox —TaZ + T = Tax)
o for x ¢ fixT,, distance to fixed-point strictly decreased
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Averaged operator formula

o let
e € (0,1)
e R:D — R"™ be nonexpansive
e T=(1-a)ld+aR
e the following are equivalent (show in exercise):

e T is a-averaged
e (1—1/a)ld+ LT(= R) is nonexpansive
o the following holds for all z,y € D

eld = T)e — (1d = T)yll* + | Tz — Tyl* < ||z — y||”
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Averaged operator formula

o (previous slide) T': D — R™ is a-averaged iff for all z,y € D
22(d = 1)z — (1d = Tyl + || Tz — Ty||* < [l - yl|?

(then =2 =1):

e graphical representation for o = %

)

. %—averaged operators are also called firmly nonexpansive
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Iterating averaged operators

assume R is nonexpansive, want to find fixed-point Z € fixR # ()
iterate the averaged map T' = (1 — «)Id 4+ aR (« design param)

k+1

the iteration x = Txz" converges to some = € fixR = fixT

proof: note that
2 — " = (Id — T)2* = (Id — T)2* — (1d - T)z
use a-averagedness formula with x = 2* and y = z:

28 la® = 2™ = 122 (d - T)a* — (1d - T)z|?
< |l2* - z)* - | Ta* - Tz
$k+1

= [l=* = 2[|* - fla"*" — 2

what to do with this?



Iterating averaged operators cont’d

e multiply by 12— and sum over k =0,1,...,n:
n a n
Dol ek < T Do (le* =2 = [l — 2[?)
k=0 k=0
_ afl2® —z?
N 11—«

e since T' is nonexpansive

2"+ = a®|| = | Ta* = Ta*7Y| < Jla* — 27

n L0 A2
(nJr 1)”In+1 - zn”Q < Z ||:Z?k+1 _ ‘Tk”Q < Oé|(=§ x)”
—
k=0

or

n 0 _ =12
anrl — 2 < xk:+1 o xk 2 < O[”"E IEH
|| [ < o

e not very informative since might not want [z"*! — 2" small 35
(compare to algorithm zF+1 = 2F)



Iterating averaged operators cont’d

current distance to fixed-point of R is ||[Rax™ — z"||
can we bound this?
yes, proof: (remember T'= (1 — a) + aR)

2"t = 2™||? = | T2 — 2" = [|(1 - @)2” + aRa"™ — 2™

= [la(Ra"™ —2™)|* = o®||Ra"™ — 2" ||?

therefore

[l® — 2]

(n+1)(1-a)a

that is ||Rz™ — 2™|| — 0 (i.e., approach fixed-point) as n — co

optimal a = 3:

|Re™ — 272 = Ll — o <
«

4HI0 _ ZE*”Q

Ril?n—l'n 2<
[ "< =D

sublinear convergence
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Iteration example - a = 0.5

e rotation operator Ry with # = 50° (nonexpansive)
o fixed-point Z at origin

e iterate 0.5-averaged operator

37



Iteration example - o = 0.25

e rotation operator Ry with 8 = 50°
o fixed-point Z at origin

o iterate 0.25-averaged operator

TN
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Iteration example - a = 0.75

e rotation operator Ry with 8 = 50°
o fixed-point Z at origin

o iterate 0.75-averaged operator
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Composition of averaged operators

e composition of averaged opertors is averaged
e assume that 73 is aj-averaged and T5 is ap-averaged, «; € (0,1)

e then T'T5 is %ﬂ—averaged with oo = 1?(111 + 13";2

e example a1 = as = 0.5 = T1Ts is %-averaged
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Negatively averaged operators

let T:D — R™ and a € (0,1)

then T is a-negatively averaged if —7T is averaged

T, are a-negatively averaged, a = 0.25,0.5,0.75, T € fixT,,
then T, for a = 0.25,0.5,0.75 can be represented as:

O-Thes O-Tos O-Tyrs

e averaged map of negatively averated operator
(1 - ﬂ)Id + BTa

is contractive (prove in exercise)

41



Composition of (negatively) averaged operators

e assume that a; € (0,1) and a2 € (0,1)
assume that 77 is aj-negatively averaged and 75 is aix-averaged
then T1T2 is a+1

o example a; = ag = 0.5 = 11T is g-negatively averaged

-negatively averaged with o = 24— + 22

e what happens if 77 and T5 are negatively averaged?
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Devise optimization algorithms

e look for mappings:

e that are nonexpansive, averaged, or contractive

e whose fixed-points can be used to solve optimization problem
e we know from previous disussion that we get:

e linear convergence for contractive mappings

e sublinear convergence for averaged mappings

e sublinear convergence for nonexpansive mappings by iterating
averaged map

e almost all algorithms in course boil down to this!
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Cocoercive operators

e assume that 7 : D — R"

e T is B-cocoercive if 5T is %—averaged

e draw a graphical representation in 2D7:

o Tx — Ty in gray area
o (dotted area shows that BT is 3-averaged, or firmly nonexpansive)
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Cocoercive operator properties

e an operator T is B-cocoercive if 8T is %—averaged, i.e.
I(I = BT)z — (I = BT)y||* + | BTz — BTy|* < |z - y]?
e equivalently (by expanding the first square and div. by 23)

(Tz — Ty,x —y) > B|Tz — Ty|?
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Properties

e [-cocoercivity of T implies y-Lipschitz continuity of T":
e estimate vy
[ ] ’Y = %:
BITz = Ty|* < (Tx —Ty,z —y) < |lo —y[|| Tz — Ty|
(then divide by 8||Tz — Ty||)
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Graphical representation in 1D

e [-cocoercivity of T'

(Tz — Ty,x —y) > B| Tz — Ty|?

e what are bounds on slope in 1D?

Tz —Ty)(x —y) >0
[Tz —Ty| < glz —yl

(nonnegative slope)

slope less than %

y="Tx
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Inverse strongly monotone

y="Tx

Relationship:

e maximum slope % of T' < minimum slope 3 of T—!

e nonnegative slope of T' < “at most” vertical slope of 7!

e we have S-cocoercivity of T' < S3-strong monotonicity of 7!
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Inverse strong monotonicity

e proof:
e [-cocoercivity:

(Tz —Ty,x —y) > B||Tz - Ty|*
e inverse: u=Tzand v =Ty iffx € T 'uand y € T 'u:
(=0, T 'u =T ") > Bllu— v

e ie., T is fB-cocoercive iff T~ is B-strongly monotone

e sometimes [-cocoercivity is called S-inverse strong monotonicity
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Summary

e we have discussed operators T" with the following properties

r—y r—y
Strong mono. Lipschitz
Averaged op. Cocoercive

e the set (or point) Tx — Ty is in the respective gray areas
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Exercise |

e assume that 7' is $-cocoercive
e estimate a small Lipschitz constant to 27 — %Id

e a Lipschitz constant is §
“proof”:
1. due to cocoercivity of 1" we have T'x — Ty in dotted circle
2. multiply by 2 (2T'z — 2Ty in dashed)
3. shift by —%Id (2T - %Id)x — (2T - %Id)y in gray)
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Exercise Il

e assume that 7' is 2-cocoercive
e Id — T is a-averaged, compute o
o Id — T is 0.25-averaged
“proof":
1. due to 2-cocoercivity of T', we have T'x — Ty in dotted circle
2. multiply by -1 (=T'z + T'y in dashed)
3. shift by Id ((Id — T)x — (Id — T')y in gray)
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Relation to (strong) monotonicity?

e can relate Lipschitz continuity, cocoercivity, and averagedness by
scaling and shifting (they are all circles)

e cannot directly relate to (strong) monotonicity

e since (-cocoercivity is S-inverse strong monotonicity, can relate
to strong monotonicity via inverse

Strong mono. Lipschitz
Averaged op. Cocoercive
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Exercise |1l

e T~ is 1-strongly monotone
e T is a-averaged, compute «
o Tis %—averaged
“proof”:
1. since T~ 1 is 1-inverse strongly monotone, T is 1-cocoercive
(Tz — Ty in gray)

2. 1-cocoercivity defined as i-

5-averagedness
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Summary

we have discussed the following operator properties
1. (strong) monotonicity
2. Lipschitz continuity (nonexpansiveness, contractiveness)
3. averaged operators
4. cocoercive operators

2., 3., and 4. are related to each other by scaling and translating
2., 3., and 4. are related to 1. through the inverse operator
iteration of averaged operators converge (sublinearly)

iteration of contractive operators converge linearly
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