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Today’s lecture

• properties of set-valued operators:
• monotonicity
• maximal monotonicity
• strong monotonicity

• properties of single-valued operators
• Lipschitz continuity (contractiveness, nonexpansiveness)
• averagedness
• cocoercivity
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Power set

• the power set of the set X is the set of all subsets of X .

• our notation: 2X

• background: if number of elements in X is finite (n), then
number of elements in the power set is 2n

• other notations exist: P(X ), ℘(X ), etc

• example:

X

X1
X2

X3

we have: X1 ∈ 2X , X2 ∈ 2X , X3 ∈ 2X , ∅ ∈ 2X , X ∈ 2X
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Operators

• an operator A : Rn → 2R
n

maps each point in Rn to a set in Rn

• called set-valued operator

• Ax (or A(x)) means A operates on x (and gives a set back)

• if Ax is a singleton for all x ∈ Rn, then A single-valued
• can construct T : Rn → Rn with {Tx} = Ax for all x ∈ Rn
• with slight abuse of notation, we treat these to be the same

• examples:
• the subdifferential operator ∂f is a set-valued operator
• the gradient operator ∇f is a single-valued operator
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Graphical representation

• a set-valued operator A : Rn → 2R
n

Ax

0 x

• depending on where the set Ax is, A has different properties
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Graph

• the graph of an operator A : Rn → 2R
n

is defined as

gphA = {(x, y) | y ∈ Ax}

• the graph consists of all pairs of points (x, y) such that y ∈ Ax
• gphA is a set, it is a subset of Rn × Rn, i.e., gphA ⊆ Rn × Rn
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Special operators

• the identity operator is denoted Id and is defined as

x = Id(x)

• inverse of an operator, defined through its graph:

gphA−1 = {(y, x) | (x, y) ∈ gphA}

(therefore y ∈ Ax if and only if x ∈ A−1y)
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Graphical representation – Inverse operators

• we have the following equivalence

y ∈ Ax ⇔ x ∈ A−1y
• therefore y ∈ A(A−1y) and x ∈ A−1(Ax)
• A and A−1 are each others images under mapping (x, y) 7→ (y, x)
• example: A in figure, draw A−1

y

x

y ∈ Ax

y

x

x ∈ A−1y 8



Monotone operators

• an operator A : Rn → 2R
n

is monotone if

〈u− v, x− y〉 ≥ 0

for all (x, u) ∈ gphA and (y, v) ∈ gphA
• graphical representation

0 x− y

then u− v in gray area (since scalar product positive)
(or set Ax−Ay in gray area)
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Monotonicity 1D

• which of the following operators A : R→ 2R are monotone?

(a) (b)

(c) (d)

(a) and (c): (y − x > 0 implies v − u ≥ 0 for (x, u), (y, v) ∈ gph(A))
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Examples of monotone mappings

• the subdifferential ∂f of f : Rn → R
• proof: let u ∈ ∂f(x) and v ∈ ∂f(y) and subdifferential definitions

f(y) ≥ f(x) + 〈u, y − x〉
f(x) ≥ f(y) + 〈v, x− y〉

to get that

〈u− v, x− y〉 ≥ 0

holds for all (x, u), (y, v) ∈ gph∂f
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Examples of monotone mappings

• a (linear) skew-symmetric mapping (i.e., A = −A∗)
• proof:

〈Ax−Ay, x− y〉 = 〈x− y,A∗(x− y)〉 = −〈x− y,A(x− y)〉
= −〈A(x− y), x− y〉 = 0

• graphical representation:

0 x− y

then Ax−Ay on thick black line
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Examples of monotone mappings

• rotation Rθ : R2 → R2 with |θ| ≤ π
2

• proof: let z = x− y

〈Rθx−Rθy, x− y〉 = 〈Rθz, z〉 =

〈[
cos θ − sin θ
sin θ cos θ

]
z, z

〉
=

〈[
z1 cos θ − z2 sin θ
z1 sin θ + z2 cos θ

]
, z

〉
= z21 cos θ + z22 cos θ ≥ 0

• graphical representation

x− y0

then Rθ(x− y) on thick semi-circle (depending on θ) 13



Maximal monotonicity

• let A : Rn → 2R
n

be monotone

• A is maximal monotone if no pair (x̄, ū) 6∈ gphA exists such that

〈ū− u, x̄− x〉 ≥ 0

for all (x, u) ∈ gphA

• equivalently: no monotone operator B exists with gphA ⊂ gphB
(strict subset)
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Graphical interpretation

• which of the following A : R→ 2R are maximal monotone?

(a) (b)

(c) (d)

• (b) and (c) are maximally monotone
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Minty’s theorem

• let A : Rn → 2R
n

be monotone
• A is maximal monotone iff ran(A+ αId) = Rn with α > 0
• shifted previous figures with 0.2Id (and re-scaled):

(a) (b)

(c) (d)

• “holes” in horizontal regions give holes in range due to +αId
• “holes” in nonhorizontal regions give holes in range due to +αId
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Strongly monotone operators

• an operator A is σ-strongly monotone if

〈u− v, x− y〉 ≥ σ‖x− y‖2

for all (x, u) ∈ gphA and (y, v) ∈ gphA
• 2D-graphical representation

0 x− y

σ

then u− v in gray area (or complete set Ax−Ay)
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1D Graphical interpretation

• strong monotonicity 〈u− v, x− y〉 ≥ σ‖x− y‖2 (σ > 0)

• which of the following are strongly monotone?

(a) (b)

• (b): ((u− v) ≥ σ(x− y))

• that is, slope is at least σ
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Examples of strongly monotone operators

• assume that f is proper closed and σ-strongly convex

• then ∂f is σ-strongly monotone
• proof:

• assumption equivalent to that g = f − σ
2
‖ · ‖2 is convex

• therefore f = g + σ
2
‖ · ‖2

• since g convex, ∂f = ∂g + σId and ∂g(x) = ∂f(x)− σx
• therefore, subgradients of g satisfy

g(y) ≥ g(x) + 〈u− σx, y − x〉
g(x) ≥ g(y) + 〈v − σy, x− y〉

where u ∈ ∂f(x) and v ∈ ∂f(y)
• add to get

0 ≥ 〈u− σx, y − x〉+ 〈v − σy, x− y〉

and rearrange to get

〈u− v, x− y〉 ≥ σ‖x− y‖2
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Examples of strongly monotone operators

• rotation operator Rθ with |θ| < π
2 (from before)

〈Rθx−Rθy, x− y〉 ≥ cos θ‖x− y‖2

• Rθ is cos θ-strongly monotone

• graphical representation (θ = π
4 )

x− y0

Rπ/4(x− y)
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Single-valued operators

• so far, have considered set-valued operators A : Rn → 2R
n

• monotonicity
• maximal monotonicity
• strong monotonicity

• now, we will consider single-valued operators T : D → Rn

• we assume that D ⊆ Rn is nonempty

• if D = Rn, then T has full domain

• a fixed-point y to the operator T : Rn → Rn satisfies y = Ty

• the set of fixed-points to T : Rn → Rn is denoted fixT
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Lipschitz continuous operator

• an operator T : D → Rn is β-Lipschitz continuous if

‖Tx− Ty‖ ≤ β‖x− y‖

holds for all x, y ∈ D
• T is single-valued (show by letting y = x and use contradiction)
• graphical representation

0 x− y

β

then Tx− Ty is in gray area
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Alternative graphical representation

• assume T has a fixed point x̄ = T x̄ then

‖Tx− x̄‖ = ‖Tx− T x̄‖ ≤ β‖x− x̄‖

x̄ x

β

then Tx in gray area
• interpretation: β relates to distance to fixed-point
• β < 1 : contractive
• β = 1 : nonexpansive
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Examples of Lipschitz continuous mappings

• a rotation is 1-Lipschitz continuous (nonexpansive)

• a linear mapping T : D → Rn is ‖T‖-Lipschitz continuous since

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ ‖T‖‖x− y‖

by Cauchy-Schwarz inequality

• compositions: assume that T1, T2 : D → Rn are β1, β2-Lipschitz,
then T1T2 is β1β2-Lipschitz

‖T1T2x− T1T2y‖ ≤ β1‖T2x− T2y‖ ≤ β1β2‖x− y‖
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Iterating a contractive operator

• a contractive (β < 1) operator T has a unique fixed-point x̄

• the iteration xk+1 = Txk converges linearly to the fixed-point (x̄):

‖xk+1 − x̄‖ = ‖Txk − T x̄‖ ≤ β‖xk − x̄‖
= β‖Txk−1 − T x̄‖ ≤ · · · ≤ βk+1‖x0 − x̄‖

x0x̄

x1
x2x3
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Fixed-points of nonexpansive operator

• a nonexpansive operator T need not have a fixed-point

• example: Tx = x+ 2

Tx = x+ 2 = x

does not hold for any x ∈ R
• it is nonexpansive (1-Lipschitz continuous)

‖Tx− Ty‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Txk:

x0 x1 x2 x3 x4 x5
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Iteration of nonexpansive operator

• if fixed-point x̄ exists, iteration xk+1 = Txk must not converge

• example: rotation by 25◦

x̄ x0

x1

x2
x3

(however, the iterates are bounded)
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Averaged operators

• let α ∈ (0, 1) and R : D → Rn be some nonexpansive operator

• an operator T : D → Rn is α-averaged if:

T = (1− α)Id + αR

• graphical representation for α = 1
2 :

x− y0

Rx−Ry

x− y0

αRx− αRy

x− y0

Tx− Ty

• draw similar figures for α = 0.25 and α = 0.75
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Averaged operators

• Tα is α-averaged with α = 0.25, 0.5, 0.75

• graphical representation:

0 x− y

– T0.25 – T0.5 – T0.75
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Fixed-points

• assume that fixR is nonempty and that α ∈ (0, 1)

• the fixed-points of T = (1− α)Id + αR and R coincide

• proof:
• a fixed point x̄ to R is a fixed-point to T :

T x̄ = (1− α)x̄+ αRx̄ = (1− α+ α)x̄ = x̄

• a fixed-point x̄ to T is a fixed-point to R:

Rx̄ = 1
α

(T + (α− 1)Id)x̄ = 1
α

(1 + α− 1)x̄ = x̄

(where R = 1
α
T − 1−α

α
Id is used)
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Additional graphical representation

• assume that Tα is α-averaged and that x̄ ∈ fixTα
• then Tα for α = 0.25, 0.5, 0.75 can be represented as:

0 x− y

previous

x̄ x

new

– T0.25 – T0.5 – T0.75
• why?

• figure on left holds for all y
• let y be a fixed-point, i.e., y = x̄
• shift left figure by y = x̄ to get right figure:

(0→ x̄, x− x̄→ x, Tαx− Tαx̄→ Tαx− Tαx̄+ x̄ = Tαx)

• for x 6∈ fixTα, distance to fixed-point strictly decreased
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Averaged operator formula

• let
• α ∈ (0, 1)
• R : D → Rn be nonexpansive
• T = (1− α)Id + αR

• the following are equivalent (show in exercise):
• T is α-averaged
• (1− 1/α)Id + 1

α
T (= R) is nonexpansive

• the following holds for all x, y ∈ D

1−α
α
‖(Id− T )x− (Id− T )y‖2 + ‖Tx− Ty‖2 ≤ ‖x− y‖2
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Averaged operator formula

• (previous slide) T : D → Rn is α-averaged iff for all x, y ∈ D

1−α
α ‖(Id− T )x− (Id− T )y‖2 + ‖Tx− Ty‖2 ≤ ‖x− y‖2

• graphical representation for α = 1
2 (then 1−α

α = 1):

0 x− y

• 1
2 -averaged operators are also called firmly nonexpansive
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Iterating averaged operators

• assume R is nonexpansive, want to find fixed-point x̄ ∈ fixR 6= ∅
• iterate the averaged map T = (1− α)Id + αR (α design param)

• the iteration xk+1 = Txk converges to some x̄ ∈ fixR = fixT

• proof: note that

xk − xk+1 = (Id− T )xk = (Id− T )xk − (Id− T )x̄

use α-averagedness formula with x = xk and y = x̄:

1−α
α ‖x

k − xk+1‖2 = 1−α
α ‖(Id− T )xk − (Id− T )x̄‖2

≤ ‖xk − x̄‖2 − ‖Txk − T x̄‖2

= ‖xk − x̄‖2 − ‖xk+1 − x̄‖2

• what to do with this?
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Iterating averaged operators cont’d

• multiply by α
1−α and sum over k = 0, 1, . . . , n:

n∑
k=0

‖xk+1 − xk‖2 ≤ α

1− α

n∑
k=0

(
‖xk − x̄‖2 − ‖xk+1 − x̄‖2

)
=
α‖x0 − x̄‖2

1− α
• since T is nonexpansive

‖xk+1 − xk‖ = ‖Txk − Txk−1‖ ≤ ‖xk − xk−1‖
i.e.

(n+ 1)‖xn+1 − xn‖2 ≤
n∑
k=0

‖xk+1 − xk‖2 ≤ α‖x0 − x̄‖2

(1− α)

or

‖xn+1 − xn‖2 ≤
n∑
k=0

‖xk+1 − xk‖2 ≤ α‖x0 − x̄‖2

(n+ 1)(1− α)

• not very informative since might not want ‖xn+1 − xn‖ small
(compare to algorithm xk+1 = xk)
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Iterating averaged operators cont’d

• current distance to fixed-point of R is ‖Rxn − xn‖
• can we bound this?

• yes, proof: (remember T = (1− α) + αR)

‖xn+1 − xn‖2 = ‖Txn − xn‖ = ‖(1− α)xn + αRxn − xn‖2

= ‖α(Rxn − xn)‖2 = α2‖Rxn − xn‖2

• therefore

‖Rxn − xn‖2 = 1
α2 ‖xn+1 − xn‖2 ≤ ‖x0 − x?‖2

(n+ 1)(1− α)α

• that is ‖Rxn − xn‖ → 0 (i.e., approach fixed-point) as n→∞
• optimal α = 1

2 :

‖Rxn − xn‖2 ≤ 4‖x0 − x?‖2

(n+ 1)

sublinear convergence
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Iteration example - α = 0.5

• rotation operator Rθ with θ = 50◦ (nonexpansive)

• fixed-point x̄ at origin

• iterate 0.5-averaged operator

x̄
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Iteration example - α = 0.25

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.25-averaged operator

x̄
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Iteration example - α = 0.75

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.75-averaged operator

x̄
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Composition of averaged operators

• composition of averaged opertors is averaged

• assume that T1 is α1-averaged and T2 is α2-averaged, αi ∈ (0, 1)

• then T1T2 is α
α+1 -averaged with α = α1

1−α1
+ α2

1−α2

• example α1 = α2 = 0.5 ⇒ T1T2 is 2
3 -averaged
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Negatively averaged operators

• let T : D → Rn and α ∈ (0, 1)
• then T is α-negatively averaged if −T is averaged
• Tα are α-negatively averaged, α = 0.25, 0.5, 0.75, x̄ ∈ fixTα
• then Tα for α = 0.25, 0.5, 0.75 can be represented as:

0 x− y x̄ x

– T0.25 – T0.5 – T0.75
• averaged map of negatively averated operator

(1− β)Id + βTα

is contractive (prove in exercise)
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Composition of (negatively) averaged operators

• assume that α1 ∈ (0, 1) and α2 ∈ (0, 1)

• assume that T1 is α1-negatively averaged and T2 is α2-averaged

• then T1T2 is α
α+1 -negatively averaged with α = α1

1−α1
+ α2

1−α2

• example α1 = α2 = 0.5 ⇒ T1T2 is 2
3 -negatively averaged

• what happens if T1 and T2 are negatively averaged?
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Devise optimization algorithms

• look for mappings:
• that are nonexpansive, averaged, or contractive
• whose fixed-points can be used to solve optimization problem

• we know from previous disussion that we get:
• linear convergence for contractive mappings
• sublinear convergence for averaged mappings
• sublinear convergence for nonexpansive mappings by iterating

averaged map

• almost all algorithms in course boil down to this!
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Cocoercive operators

• assume that T : D → Rn

• T is β-cocoercive if βT is 1
2 -averaged

• draw a graphical representation in 2D?:

0 x− y
1
β

• Tx− Ty in gray area

• (dotted area shows that βT is 1
2 -averaged, or firmly nonexpansive)
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Cocoercive operator properties

• an operator T is β-cocoercive if βT is 1
2 -averaged, i.e.

‖(I − βT )x− (I − βT )y‖2 + ‖βTx− βTy‖2 ≤ ‖x− y‖2

• equivalently (by expanding the first square and div. by 2β)

〈Tx− Ty, x− y〉 ≥ β‖Tx− Ty‖2

0 x− y
1
β
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Properties

• β-cocoercivity of T implies γ-Lipschitz continuity of T :
• estimate γ
• γ = 1

β :

β‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉 ≤ ‖x− y‖‖Tx− Ty‖

(then divide by β‖Tx− Ty‖)

0 x− y
1
β
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Graphical representation in 1D

• β-cocoercivity of T

〈Tx− Ty, x− y〉 ≥ β‖Tx− Ty‖2

• what are bounds on slope in 1D?

(Tx− Ty)(x− y) ≥ 0 (nonnegative slope)

|Tx− Ty| ≤ 1
β |x− y| slope less than 1

β

y

x

y = Tx
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Inverse strongly monotone

y

x

y = Tx

y

x

x ∈ T−1y

Relationship:

• maximum slope 1
β of T ⇔ minimum slope β of T−1

• nonnegative slope of T ⇔ “at most” vertical slope of T−1

• we have β-cocoercivity of T ⇔ β-strong monotonicity of T−1

48



Inverse strong monotonicity

• proof:
• β-cocoercivity:

〈Tx− Ty, x− y〉 ≥ β‖Tx− Ty‖2

• inverse: u = Tx and v = Ty iff x ∈ T−1u and y ∈ T−1u:

〈u− v, T−1u− T−1v〉 ≥ β‖u− v‖2

• i.e., T is β-cocoercive iff T−1 is β-strongly monotone

• sometimes β-cocoercivity is called β-inverse strong monotonicity
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Summary

• we have discussed operators T with the following properties

0 x− y

Strong mono.

0 x− y

Lipschitz

x− y0

Averaged op.

x− y0

Cocoercive

• the set (or point) Tx− Ty is in the respective gray areas
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Exercise I

• assume that T is β-cocoercive
• estimate a small Lipschitz constant to 2T − 1

β Id

• a Lipschitz constant is 1
β

“proof”:
1. due to cocoercivity of T we have Tx− Ty in dotted circle
2. multiply by 2 (2Tx− 2Ty in dashed)
3. shift by − 1

β
Id ((2T − 1

β
Id)x− (2T − 1

β
Id)y in gray)

1
β

0 x− y
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Exercise II

• assume that T is 2-cocoercive

• Id− T is α-averaged, compute α

• Id− T is 0.25-averaged
“proof”:

1. due to 2-cocoercivity of T , we have Tx− Ty in dotted circle
2. multiply by -1 (−Tx+ Ty in dashed)
3. shift by Id ((Id− T )x− (Id− T )y in gray)

1
2

0 x− y
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Relation to (strong) monotonicity?

• can relate Lipschitz continuity, cocoercivity, and averagedness by
scaling and shifting (they are all circles)

• cannot directly relate to (strong) monotonicity
• since β-cocoercivity is β-inverse strong monotonicity, can relate

to strong monotonicity via inverse

0 x− y

Strong mono.

0 x− y

Lipschitz

x− y0

Averaged op.

x− y0

Cocoercive
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Exercise III

• T−1 is 1-strongly monotone

• T is α-averaged, compute α

• T is 1
2 -averaged

“proof”:
1. since T−1 is 1-inverse strongly monotone, T is 1-cocoercive

(Tx− Ty in gray)
2. 1-cocoercivity defined as 1

2
-averagedness

0 x− y
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Summary

• we have discussed the following operator properties

1. (strong) monotonicity
2. Lipschitz continuity (nonexpansiveness, contractiveness)
3. averaged operators
4. cocoercive operators

• 2., 3., and 4. are related to each other by scaling and translating

• 2., 3., and 4. are related to 1. through the inverse operator

• iteration of averaged operators converge (sublinearly)

• iteration of contractive operators converge linearly
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