
Modeling

Pontus Giselsson

1

Today’s lecture

• signal reconstruction

• supervised learning - regression
• least squares
• ridge regression
• lasso (group lasso)
• elastic net

• supervised learning - classification
• classification
• support-vector machines
• sparse classification

• control (model predictive control)

2

Functions

• in most examples, we use only the following functions

‖ · ‖, 1
2‖ · ‖

2, ιV , V affine subspace, h(x) =
∑
i

hi(xi)

where hi : R→ R is

hi(x) =


cl(l − x) if x ≤ l
0 if l ≤ x ≤ u
cu(x− u) if x ≥ u

where cl, cu ∈ (0,∞] (∞ included) and l ≤ u
• we compose these functions with affine operators Lx− b

3

Graphical representations of hi

• graphical representations of different hi

cl = 1
2 , cu = 2

l = −1, u = 1

cl = cu =∞
l = −1, u = 1

cl = cu = 1

l = u = 0

• special cases of hi
• upper and lower bounds
• the 1-norm
• skewed 1-norms
• “soft” upper and lower bounds

4

0-norm

• in many applications we would ideally like to use the 0-norm

• the 0-norm ‖x‖0 counts the number of nonzero elements in x

• that is ‖x‖0 =
∑
i hi(xi) where

hi(xi) =

{
0 if xi = 0

1 else

• graphical representation

• it is obviously nonconvex

• often the 1-norm is used as a convex proxy for this

• why? 1-norm is convex envelope of ‖x‖0 + ι‖x‖≤1(x) for ‖x‖ ≤ 1

5

Signal reconstruction

• in signal reconstruction, we have a noisy signal y

• assume that measurement from process with slow changes

• approximate with signal x that captures process behavior

• therefore: want neighboring time-steps to be close to each other

• we have two competing objectives, want x ≈ y and x vary slowly

6

Signal reconstruction

• introduce difference operator D

D =

1 −1
. . .

. . .

1 −1


• then

Dx =

 x1 − x2

...
xn−1 − xn


• want Dx small and x ≈ y
• can you model this as an optimization problem?

• consider optimization problem

minimize 1
2‖x− y‖

2 + λ‖Dx‖2

where y contains measurements and λ > 0 trades off objectives

7

Signal reconstruction

• introduce difference operator D

D =

1 −1
. . .

. . .

1 −1


• then

Dx =

 x1 − x2

...
xn−1 − xn


• want Dx small and x ≈ y
• can you model this as an optimization problem?
• consider optimization problem

minimize 1
2‖x− y‖

2 + λ‖Dx‖2

where y contains measurements and λ > 0 trades off objectives

7

Numerical example

• we have y ∈ R300

• y constructed by random walk in R

8

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

9

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 1

9

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 10

9

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 100

9

Example

• what if we instead want piece-wise constant approximation?

• then we want Dx to be sparse

• how to model this?

• typically we want to minimize ‖Dx‖0
• nonconvex, use our convex proxy ‖Dx‖1

10

Example

• what if we instead want piece-wise constant approximation?

• then we want Dx to be sparse

• how to model this?

• typically we want to minimize ‖Dx‖0
• nonconvex, use our convex proxy ‖Dx‖1

10

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

11

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 1

11

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 10

11

Result

minimize 1
2‖x− y‖

2 + λ‖Dx‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 100

11

Piece-wise linear approximation

• maybe we want a piece-wise linear approximation instead

• introduce the second order discrete difference

D2 =

1 −2 1
. . .

. . .
. . .

1 −2 1


• this is zero on any line

• how to model piece-wise linear approximation?

minimize 1
2‖x− y‖

2 + λ‖D2x‖1

12

Piece-wise linear approximation

• maybe we want a piece-wise linear approximation instead

• introduce the second order discrete difference

D2 =

1 −2 1
. . .

. . .
. . .

1 −2 1


• this is zero on any line

• how to model piece-wise linear approximation?

minimize 1
2‖x− y‖

2 + λ‖D2x‖1

12

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

13

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 1

13

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 10

13

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 100

13

Smooth second derivative

• we might instead want a smooth second derivative

• how to model this?

minimize 1
2‖x− y‖

2 + λ‖D2x‖22

14

Smooth second derivative

• we might instead want a smooth second derivative

• how to model this?

minimize 1
2‖x− y‖

2 + λ‖D2x‖22

14

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

15

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 1

15

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 10

15

Result

minimize 1
2‖x− y‖

2 + λ‖D2x‖22

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

20

λ = 100

15

Periodic disturbances

• assume that our signal is disturbed by a periodic signal pd ∈ Rn

• pd could model yearly/weekly/daily variations

• our measurement is still y

• we are interested in, say, a piece-wise linear estimation of y − p
• how to model this?

assume period is T

minimize 1
2‖x− (y − p)‖2 + λ‖D2x‖1

subject to pi = pi+kiT for i = 1, . . . , T as long as i+ kiT ≤ n

• x and p optimization variables! (p should estimate pd)

16

Periodic disturbances

• assume that our signal is disturbed by a periodic signal pd ∈ Rn

• pd could model yearly/weekly/daily variations

• our measurement is still y

• we are interested in, say, a piece-wise linear estimation of y − p
• how to model this? assume period is T

minimize 1
2‖x− (y − p)‖2 + λ‖D2x‖1

subject to pi = pi+kiT for i = 1, . . . , T as long as i+ kiT ≤ n

• x and p optimization variables! (p should estimate pd)

16

Result

minimize 1
2‖x− (y − p)‖2 + λ‖D2x‖1

subject to pi = pi+kiT for i = 1, . . . , T as long as i+ kiT ≤ n

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−30

−20

−10

0

10

20

30

40
y

17

Result

minimize 1
2‖x− (y − p)‖2 + λ‖D2x‖1

subject to pi = pi+kiT for i = 1, . . . , T as long as i+ kiT ≤ n

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−30

−20

−10

0

10

20

30

40
y
x

17

Result

minimize 1
2‖x− (y − p)‖2 + λ‖D2x‖1

subject to pi = pi+kiT for i = 1, . . . , T as long as i+ kiT ≤ n

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−30

−20

−10

0

10

20

30

40
y

y − pd
x

17

Two-dimensional reconstruction

• can also reconstruct images (2D-signals)
• example: 90% of pixels in image lost

• reconstruct using difference in 2D (TV-norm)

minimize
n−1∑
i=1

m∑
j=1

|xi,j − xi+1,j |+
n∑
i=1

m−1∑
j=1

|xi,j − xi,j+1|

• known pixels are set to correct value

18

Two-dimensional reconstruction

• can also reconstruct images (2D-signals)
• example: 90% of pixels in image lost

• reconstruct using difference in 2D (TV-norm)

minimize
n−1∑
i=1

m∑
j=1

|xi,j − xi+1,j |+
n∑
i=1

m−1∑
j=1

|xi,j − xi,j+1|

• known pixels are set to correct value
18

Two-dimensional reconstruction

• example: 70% of pixels in image lost

19

Two-dimensional reconstruction

• example: 70% of pixels in image lost

19

Two-dimensional reconstruction

• example: 50% of pixels in image lost

20

Two-dimensional reconstruction

• example: 50% of pixels in image lost

20

Two-dimensional reconstruction

• example: 30% of pixels in image lost

21

Two-dimensional reconstruction

• example: 30% of pixels in image lost

21

Comparison to ground truth

22

Modeling idea

• if you want to enforce something approximately, use ‖ · ‖22
• if you want to be likely to enforce something (sparsity), use ‖ · ‖1
• if you want to really enforce something, use constraints

23

Learning from data

• we have data from which we want to draw conclusions

• the data is represented as points xi in an Euclidean space

• we let X = [x1, . . . , xn] be the data matrix

• every row in X is called an example

• every column in X is called a feature

24

Examples

• features might be:

1. frequencies of words in a dictionary
2. boolean variables, e.g., is actor in movie m?
3. numerical values of blood pressure, temperature, price
4. rating of a movie, music, etc

• examples might be:

1. emails
2. different actors
3. patients
4. streaming service customers

25

Supervised and unsupervised learning

• we can roughly divide learning tasks into
• supervised learning
• unsupervised learning

• supervised learning:
• also have response variables yi for each example
• response variables can be real-valued (regression)
• response variables can be integer-valued (classification)
• objective: create model of unknown function x 7→ y(x)

(x data-vector and y response variable)

• unsupervised learning:
• no response variables
• objective: learn information or structure about data

• we will talk about supervised learning

26

Linear model

• we start with a linear model for the mapping x 7→ y(x)

• have data X = [x1, . . . , xn]

• have real-valued responses y = (y1, . . . , ym) (yi ∈ R)

• create estimator ŷ with

ŷ(x) = b+ 〈s, x〉

• objective: minimize prediction error on data:

minimize
n∑
i=1

(ŷ(xi)− yi)2

• let β = (s, b), then the problem becomes:

minimize
n∑
i=1

(〈s, xi〉+ b− yi)2 = ‖Φβ − y‖2

• least squares problem

27

Removing constant term

• what is optimal b?

minimize
n∑
i=1

(〈s, xi〉+ b− yi)2 = ‖Φβ − y‖2

• optimality condition w.r.t. b:

bn+

n∑
i=1

(〈s, xi〉 − yi) = 0 ⇔ b = 1
n (

n∑
i=1

yi − 〈s, xi〉) = ȳ − 〈s, x̄〉

where x̄ and ȳ are mean values

• let x̃i = xi − x̄ and ỹi = yi − ȳ, then it is equivalent to solve

minimize
n∑
i=1

(〈s, x̃i〉 − ỹi)2 = ‖X̃s− ỹ‖2

where X̃ contains all x̃i
• we assume from now that average subtracted from data

28

Scaling response variables

• what happens if we scale our responses y with a nonzero scalar γ?

• the problem becomes

minimize ‖Xs− γy‖2 = ‖γ(X s
γ − y)‖2 = γ2‖X s

γ − y‖
2

• the solution gets scaled with γ−1

• convention: scale y with norm of y

29

Scaling features

• consider the least squares problem (X = [x1 . . . , xn])

minimize ‖Xs− y‖2 =

∥∥∥∥∥
n∑
i=1

sixi − y

∥∥∥∥∥
2

• “select linear combination of features that best approximates y”

• big value of si means feature i important in describing y

• for any i replace xi with x̂i = 2xi, what happens with solution s?

• we get ŝi = 1
2si, the rest the same

• is feature i now less important in prediction?

• of course not, to avoid this, scale all features to unit norm

• (diagonal elements of XTX become 1 ⇒ Jacobi scaling)

30

Scaling features

• consider the least squares problem (X = [x1 . . . , xn])

minimize ‖Xs− y‖2 =

∥∥∥∥∥
n∑
i=1

sixi − y

∥∥∥∥∥
2

• “select linear combination of features that best approximates y”

• big value of si means feature i important in describing y

• for any i replace xi with x̂i = 2xi, what happens with solution s?

• we get ŝi = 1
2si, the rest the same

• is feature i now less important in prediction?

• of course not, to avoid this, scale all features to unit norm

• (diagonal elements of XTX become 1 ⇒ Jacobi scaling)

30

Scaling features

• consider the least squares problem (X = [x1 . . . , xn])

minimize ‖Xs− y‖2 =

∥∥∥∥∥
n∑
i=1

sixi − y

∥∥∥∥∥
2

• “select linear combination of features that best approximates y”

• big value of si means feature i important in describing y

• for any i replace xi with x̂i = 2xi, what happens with solution s?

• we get ŝi = 1
2si, the rest the same

• is feature i now less important in prediction?

• of course not, to avoid this, scale all features to unit norm

• (diagonal elements of XTX become 1 ⇒ Jacobi scaling)

30

Example

• fit affine line to data using LS:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

31

Nonaffine example

• fit affine line to data using LS:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

32

Nonaffine example

• fit affine line to data using LS:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

32

Polynomial models

• a linear model may not be accurate enough to model relationship
• try, e.g., a quadratic model

ŷ(x) = b+ 〈s, x〉+

n∑
i=1

i∑
j=1

wijxixj

• for x ∈ R, this becomes

ŷ(x) = b+ sx+ wx2 = 〈β, φ(x)〉

where β = (b, s, w) and φ(x) = (1, x, x2)
• for x ∈ R2, this becomes

ŷ(x) = b+ s1x1 + s2x2 + w11x
2
i + w12xixj + w22x

2
j = 〈β, φ(x)〉

• where

β = (b, s1, s2, w11, w12, w22)

φ(x) = (1, x1, x2, x
2
1, x1x2, x

2
2)

• we add new features to problem, still linear in parameters βi
33

Least squares estimate

• data model example:

ŷ(x) = b+ s1x1 + s2x2 + w11x
2
i + w12xixj + w22x

2
j = 〈β, φ(x)〉

• least squares estimate

minimize (ŷ(xi)− yi)2 = (〈β, φ(xi)〉 − yi)2

• build new data matrix

X =

1 [x1]1 [x1]2 [x1]1[x1]1 [x1]1[x1]2 [x1]2[x1]2
...
1 [xm]1 [xm]2 [xm]1[xm]1 [xm]1[xm]2 [xm]2[xm]2


• then LS problem can be written as

minimize ‖Xβ − y‖2

• lift problem to higher dimensional LS problem

• obviously higher order models can be used as well!

34

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.797, k = 1

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.335, k = 2

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.335, k = 3

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.328, k = 4

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.324, k = 5

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.274, k = 6

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.166, k = 7

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.161, k = 8

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.022, k = 9

35

Nonaffine example

• fit polynomial of degree k to data using LS (J is cost):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.002, k = 10

35

Evaluating model

• how to evaluate what model order to select?

• cross validation, train polynomial on subset of full data

• keep rest of data (30%) to validate the model

36

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.729, k = 1

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.703, k = 2

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.700, k = 3

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.724, k = 4

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.730, k = 5

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.818, k = 6

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.904, k = 7

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 0.867, k = 8

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 1.189, k = 9

37

Validate example

• how does fitted polynomial explain test data (J validation cost)?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

J = 1.285, k = 10

37

Tradeoff

• training error and test error vs polynomial order:

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

training error

test error

38

Characterizing the LS solution

• by assumption, data matrix X has full column rank

• optimal s satisfies (let gradient be zero)

XTXs−XT y = 0 ⇔ s = (XTX)−1XT y

• let XTX = UΣUT , with Σ = diag(σ1, . . . , σn) and U unitary
UT = U−1

• then solution to problem is

s = (UΣUT)−1XT y = UΣ−1UTXT y

=

n∑
i=1

1
σi
〈ui, XT y〉ui

• elements with small singular values in XTX amplified

• might amplify noise in those directions

• can give rise to overfitting if model of too high complexity

39

Tikhonov regularization

• what if we instead solve regularized Least squares problem

minimize ‖Xs− y‖2 + λ‖s‖2

• optimal s satisfies (let gradient be zero)

(XTX + λI)s−XT y = 0 ⇔ s = (XTX + λI)−1XT y

• let XTX = UΣUT , where Σ = diag(σ1, . . . , σn) and UT = U−1

• then I = U(λI)UT and solution to problem is

s = (U(Σ + λI)UT)−1XT y = U(Σ + λI)−1UTXT y

=

n∑
i=1

1
σi+λ
〈ui, XT y〉ui

• for small σi, factor ≈ 1
λ , for large σi, factor ≈ 1

σi

• reduced influence from small singular values in XTX
⇒ reduces noise amplification in those directions
⇒ reduces overfitting when using too complex models

• (choose lambda using cross validation)

40

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 1

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 2

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 3

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 4

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 5

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 6

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 7

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 8

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 9

41

Example

• same example as before
• overfitting is reduced for (too) high complexity models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k = 10

41

Underdetermined systems

• so far, we have discussed overdetermined linear systems

• what if we have an underdetermined linear system?

• that is, X is does not have full column rank

• that is, there is an infinite amount of solutions to

minimize ‖Xs− y‖2

• using Tikhonov regularization
• we get unique solution
• avoid solutions with large norms (that run away in nullspace of X)
• we can reduce overfitting when using too complex models

42

Feature selection

• assume that we have X ∈ Rm×n with m < n (or m� n)

• that is, (far) fewer examples than features

• LS solution not unique (but typically nonzero in all elements)

• we would like to select a subset of features to explain data

• easier to interpret solution

• typically want subset to have cardinality (much) less than m

• this leads us to pose the following 1-norm problem

minimize ‖Xs− y‖2
subject to ‖s‖0 ≤ k

where k is a positive integer that decides size of subset

43

Convex relaxation

• ‖s‖0 is nonconvex, instead use the convex proxy ‖s‖1:

minimize ‖Xs− y‖2
subject to ‖s‖1 ≤ t

• this is equivalent, for some λ:

minimize ‖Xs− y‖2 + λ‖s‖1

• this problem is called the lasso problem

• typically gives sparse solutions

• λ decided by cross validation and desired sparsity

44

Example

• lasso problem with X ∈ R30×200 for different λ
• solution for different lambdas:

so
lu

ti
on

λ
0 2 4 6 8 10 12 14

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

• more nonzero elements in solution as λ decreases
• note that ‖x‖0 = 30 for small λ (i.e., 170 xi = 0)

45

Solving the lasso

• coordinate descent is most commonly used algorithm

• let i = 0, λi = ‖XT b‖∞, which gives s∗λi
= 0, proceed as:

1. set λi+1 < λi
2. discard variables that will be zero in s∗λi+1

(screening)
3. use s∗λi

as warm-start for problem with λi+1

4. solve lasso with λi+1 (using, e.g., coordinate descent)
5. cross-validate to decide if solution with λi+1 good ⇒ return s∗λi+1

6. increase i by 1 and goto 1.

46

Lasso and correlation

• assume that two equal features exist, e.g., xi = xi+1 for some i

• let w.l.o.g. i = 1, and let s∗ solve lasso problem for given λ

minimize ‖Xs− y‖2 + λ‖s‖1

• assume that there exist solution with ∆ = s∗1 + s∗2
• assume w.l.o.g. that ∆ > 0, then s∗1, s

∗
2 ∈ [0,∆]

• further any s1 ∈ [0,∆], s2 = ∆− s1 are optimal

47

Lasso and correlation

• the problem of selecting s1 and s2 reduces to

minimize ‖x1(s1 + s2) + b̂‖2 + λ|s1|+ λ|s2|

for an appropriate b̂
• if s2 = ∆− s1 ⇒ quadratic cost unchanged
• rest reduces to

min
s1

λ(|s1|+ |∆− s1|)

0 ∆

• optimal if s1 ∈ [0,∆] (and s2 = ∆− s1 ∈ [0,∆])

48

Lasso and correlation

• if instead x1 and x2 are almost linearly dependent

• the problem is of selecting s1 and s2 reduces to

minimize ‖x1s1 + x2s2 + b̂‖2 + λ|s1|+ λ|s2|

• if x1 (slightly) better explains data, s2 will be set to 0

• want to be sure that both features are selected

49

Tikhonov regularization

• add tikhonov regularization to the lasso

minimize ‖Xs− y‖2 + λ1‖s‖1 + λ2‖s‖2

• this problem is called elastic net

• assume that x1 = x2 and that s∗ solves the elastic net

• assume that there exist solution ∆ = s∗1 + s∗2
• then s∗1 = s∗2 = ∆

2

50

Tikhonov regularization

• proof: as before, quadratic cost unchanged for s2 = ∆− s1

• remaining (regularization) part is

min
s1

λ1(|s1|+ |∆− s1|) + λ2(s2
1 + (∆− s1)2)

0 ∆

• that is s1 = ∆/2 and s2 = ∆− s1 = ∆/2

• for almost correlated features, both (or none) probably selected

51

Group lasso

• sometimes we want groups of variables to be 0 or nonzero

• introduce s = (s1, . . . , sp) where si ∈ Rni

• the group lasso problem is

minimize 1
2‖Xs− b‖

2 + λ

p∑
i=1

‖si‖

• in 1D, case (i.e., ni = 1) it reduces to the lasso

• prox of each part of group norm is

argmin
s
{‖s‖+ 1

2‖s− z‖
2} =

{
0 if ‖z‖ ≤ 1

z − z/‖z‖ else

• there are no kinks saying that individual components should be 0

52

Classification

• you have a set of labeled data (xi, yi) ∈ Rn → R
• the yi are binary, i.e., yi ∈ {−1, 1}
• the objective is to find a hyperplane that separates points

• that is, we want to find s and r such that

〈s, xi〉 ≥ 0 for all i with yi = 1

〈s, xi〉 ≤ 0 for all i with yi = 0

• this can model, e.g., a spam filter

• xi are number of encountered words or phrases

• yi is label for spam or no spam

• want to train spam filter (decide s) for future predictions

53

Optimization formulation

• ideally, we want a function h(Xs) =
∑
hi(〈xi, s〉, yi) with

hi(zi, yi) =

{
0 if ziyi ≥ 0

1 else

• this counts xi that are mis-classified for a certain s

• optimizing this minimizes number of mis-classifications on data

54

Convex proxy

• we settle for a convex proxy h(Xs) =
∑
hi(〈xi, s〉, yi) with

hi(zi, yi) =

{
0 if ziyi ≥ 1

1− yizi else

• this is called hinge loss

• can be written as max(0, 1− ziyi)
• the classification problem becomes

minimze h(Xs)

55

Example

• classification problem with X ∈ R50×2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

56

Regularization

• add squared 2-norm regularization ⇒ support vector machine

minimize h(Xs) + ‖s‖2

• Tikhonov regularization, reduces overfitting for complex models
• often solved via the dual

• add 1-norm regularization ⇒ sparse classification

minimize h(Xs) + ‖s‖1

• find subset of parameters to split the data

57

Sparse example

• sparse classification problem with X ∈ R50×2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

• gives sparse classifier despite some misclassifications
• (more useful in higher dimensions) 58

Nonlinear classification

• can do nonlinear classification by adding features
• done as in normal regression case already covered
• example: features for second order (x1x2,x2

1,x2
2) included

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

59

Model predictive control

• we want to control a linear dynamical system described by

xt+1 = Axt +But

• ut is the input at time t, xt is system state at time t

• state at time t+ 1 depends linearly on state and input at t

• we have limitations on inputs

ut ∈ U

• we have desired region for (linear combination of) states

Cxt ∈ X

• define desired operating point xr

• let ur be consistent input, i.e., such that xr = Axr +Bur

• objective: choose {ut}∞t=0 such that xt+1 → xr as t→∞
60

Feedback

• we typically have disturbances vt in the model, e.g.,:

xt+1 = Axt +But + vt

• therefore we cannot precompute whole sequence {ut}∞t=0

• use feedback: in each sample t compute ut

• many ways to compute feedback, e.g., using optimization

61

Formulate optimization cost

• solve problem as if disturbance nonexistent

• want xt to stay close to xr for all future t

• not necessary on xr because will anyway drift due to disturbance

• want ut to stay close to consistent ur for all future t

• suggested cost (using future estimated states,inputs) x̂, û :

∞∑
τ=1

‖x− xr‖2 + ‖ut − ut‖2

• might want to penalize individual states and inputs differently:

∞∑
i=1

‖xt − xr‖2Q + ‖ut − ut‖2R

62

Formulate optimization constraints

• add (estimated) dynamics relation as constraints

x̂t+1 = Ax̂t +Bût, t = 0, . . . ,∞

with initial condition x̂0 = xt (measurement of current state)

• add constraints on inputs and states

ut ∈ U , Cxt ∈ X , t = 0, . . . ,∞

63

Tractable formulation

• the full problem is on the form

minimize
∞∑
i=1

‖x̂t − xr‖2Q + ‖ût − ut‖2R

subject to x̂t+1 = Ax̂t +Bût, t = 0, . . . ,∞
ût ∈ U , Cx̂t ∈ X , t = 0, . . . ,∞
x̂0 = xt

• this is not tractable due to infinite horizon ⇒ truncate

minimize
N∑
i=1

‖x̂t − xr‖2Q + ‖ût − ut‖2R

subject to x̂t+1 = Ax̂t +Bût, t = 0, . . . , N
ût ∈ U , Cx̂t ∈ X , t = 0, . . . , N
x̂0 = xt

• if Q,R positive semidefinite and U ,X convex ⇒ problem convex
• if R positive definite and system controllable ⇒ unique solution
• choose N large enough to see all dynamics (and a bit longer)
• MPC: iteratively solve this problem and apply û0

64

Other behavior

• if we want piece-wise constant input, add term:

N−1∑
t=1

‖ût+1 − ût‖1

• if we want to maximize, e.g., profit, change objective to

N∑
t=1

〈p, xt〉

(gives economic MPC)

65

Infeasibility

• for some initial condition x̂0, the problem might be infeasible

• then have no input to send to system

• avoid this by having soft constraints on states

• then can be shown that problem is never infeasible

66

Upper and lower bounds

• if, e.g., X model upper and lower bounds, i.e.

ιX (z) =

{
0 if z ∈ [l, u]

∞ else

• replace with cost for some large c > 0

h(z) =


0 if z ∈ [l, u]

c(l − z) if z ≤ l
c(z − u) if z ≥ u

67

Desired closed-loop behavior?

• want to guarantee stability, feasibility, and performance
• usually feasibility is hardest

• can formulate tube-based MPC
• then state in tube independent on disturbance in compact set
• require full tube to be feasible
• conservative!

• stability and performance
• consider abstract formulation of MPC-problem

VN (x0) = min
({xt},{ut})∈D(x0)

N∑
t=1

`(xtut)

• under some assumptions and for some α ∈ (0, 1), we have:

VN (xt+1) ≤ VN (xt) + α`(xt, ut)

• then telescope summation gives

α

∞∑
t=0

`(xt, ut) ≤ VN (x0)

that is `(xt, ut)→ 0 as t→∞
68

Example

• use MPC to control control pitch angle and angle in aircraft
• upper and lower bounds on input
• soft upper and lower bounds on output
• objective: follow references and satisfy constraints

0 0.1 0.2 0.3 0.4
−1

−0.5

0

0.5

1
y1

time (ms)

a
n
g
le

 o
f
a
tt
a
c
k

0 0.1 0.2 0.3 0.4

0

2

4

6

8

10

y2

time (ms)

p
it
c
h
 a

n
g
le

0 0.1 0.2 0.3 0.4
−40

−20

0

20

40
u1

time (ms)

e
le

v
a
to

r
a
n
g
le

0 0.1 0.2 0.3 0.4
−40

−20

0

20

40
u2

time (ms)

fl
a
p
e
ro

n
 a

n
g
le

69

Other applications

• unsupervised learning (just data, no response variables)

• portfolio optimization

• circuit design

• antenna array design

• digital filter design

• optimal advertising

• supply chain management

• ...

70

