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Today’s lecture

signal reconstruction
supervised learning - regression

e |east squares

o ridge regression

e lasso (group lasso)
e elastic net

supervised learning - classification

o classification
® support-vector machines
e sparse classification

control (model predictive control)



Functions

e in most examples, we use only the following functions

2

-1, 5ll- 1% o,V affine subspace, h(x) = > hy(x;)

where h; : R—Ris

all—z) ifz<l
hi(x) =<0 fl<z<u

cu(r—u) fz>u

where ¢, ¢, € (0,00] (00 included) and I < w

e we compose these functions with affine operators Lz — b



Graphical representations of h;

e graphical representations of different h;

N

cg=cy,=1
lzfl,UZI l:U/:O

€] = Cy = 00

N|=

=35, C=2
l=—-1,u=1

e special cases of h;
e upper and lower bounds
e the 1-norm
o skewed 1-norms
e ‘“soft” upper and lower bounds



0-norm

in many applications we would ideally like to use the 0-norm
the 0-norm ||z||p counts the number of nonzero elements in x
that is ||z|lo = >, hi(z;) where

0 ifl‘i:O

hi(x;) =
() 1 else

graphical representation

—

it is obviously nonconvex
often the 1-norm is used as a convex proxy for this

why? 1-norm is convex envelope of ||z(|o 4 ¢z<1(z) for [|z| <1



Signal reconstruction

in signal reconstruction, we have a noisy signal y

assume that measurement from process with slow changes
approximate with signal z that captures process behavior
therefore: want neighboring time-steps to be close to each other

we have two competing objectives, want = ~ y and x vary slowly



Signal reconstruction

introduce difference operator D

1 -1
D =
1 -1
then
Ty — T2
Dz =
In—1— Tn

want Dz small and z = y
can you model this as an optimization problem?



Signal reconstruction

introduce difference operator D

1 -1
D =
1 -1
then
Ty — T2
Dz =
In—1— Tn

want Dx small and x = y
can you model this as an optimization problem?
consider optimization problem

minimize [z — y||* + A|| Dz|/?

where y contains measurements and A > 0 trades off objectives



Numerical example

e we have y € R3%0

e y constructed by random walk in R
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Result

minimize ||z — y||* + || Dz|)3
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Example

e what if we instead want piece-wise constant approximation?
e then we want Dx to be sparse

e how to model this?
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Example

what if we instead want piece-wise constant approximation?
then we want Dx to be sparse

how to model this?

typically we want to minimize ||Dz||o

nonconvex, use our convex proxy || Dx||;
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Result

minimize ||z — y[|* + || Dz |
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Result

minimize ||z — y||> + A||[ Dz |
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minimize ||z — y||> + A||[ Dz |
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Piece-wise linear approximation

maybe we want a piece-wise linear approximation instead
introduce the second order discrete difference
1 -2 1
Dy =

this is zero on any line

how to model piece-wise linear approximation?
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Piece-wise linear approximation

maybe we want a piece-wise linear approximation instead

introduce the second order discrete difference

1 -2 1
Dy =

this is zero on any line

how to model piece-wise linear approximation?

minimize 3 ||z — yl|* + Al|Daz||;
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Result

minimize ||z — y[|> + || D2z|1
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minimize ||z — y[|> + || D2z|1
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Smooth second derivative

e we might instead want a smooth second derivative
e how to model this?

14



Smooth second derivative

e we might instead want a smooth second derivative
e how to model this?

minimize ||z — y[|> + A|| D23

14
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Result

minimize 1|z — y||> + A|| D23
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Result

minimize 1|z — y||> + A|| D23
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Result

minimize 1|z — y||> + A|| D23
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Periodic disturbances

assume that our signal is disturbed by a periodic signal p; € R™
pa could model yearly/weekly/daily variations

our measurement is still y

we are interested in, say, a piece-wise linear estimation of y — p

how to model this?
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Periodic disturbances

assume that our signal is disturbed by a periodic signal p; € R™
pa could model yearly/weekly/daily variations

our measurement is still y

we are interested in, say, a piece-wise linear estimation of y — p
how to model this? assume period is T’

minimize 3|z — (y — p)||* + Al D2z |1
subject to  p; = pipr,r fori=1,..., T aslongasi+ kT <n

x and p optimization variables! (p should estimate py)
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Result

minimize 4z — (y — p)|[2 + A| Dzl
subject to  p; = piyg,r fori=1,...,T aslongasi+ kT <n
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Result
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Result

minimize Lo~ (y — p)|2 + A Dz
subject to  p; = piyg,r fori=1,...,T aslongasi+ kT <n

40
30
20

—10

—20

Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

17



Two-dimensional reconstruction

e can also reconstruct images (2D-signals)
e example: 90% of pixels in image lost
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Two-dimensional reconstruction

e can also reconstruct images (2D-signals)
e example: 90% of pixels in image lost

e reconstruct using difference in 2D (TV-norm)

n—1 m n m—1
minimize E E |zi; — @ig1,5] + E E |ij — @ij41
i=1 j=1 i=1 j=1

e known pixels are set to correct value

18



Two-dimensional reconstruction

e example: 70% of pixels in image lost
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Two-dimensional reconstruction

e example: 70% of pixels in image lost
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Two-dimensional reconstruction

e example: 50% of pixels in image lost

20



Two-dimensional reconstruction

e example: 50% of pixels in image lost
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Two-dimensional reconstruction

e example: 30% of pixels in image lost
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Two-dimensional reconstruction

e example: 30% of pixels in image lost
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Comparison to ground truth
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Modeling idea

e if you want to enforce something approximately, use || - ||3
e if you want to be likely to enforce something (sparsity), use || - ||1

o if you want to really enforce something, use constraints

23



Learning from data

we have data from which we want to draw conclusions
the data is represented as points x; in an Euclidean space
we let X = [x1,...,2,] be the data matrix

every row in X is called an example

every column in X is called a feature

24



Examples

o features might be:

1. frequencies of words in a dictionary

2. boolean variables, e.g., is actor in movie m?

3. numerical values of blood pressure, temperature, price
4. rating of a movie, music, etc

e examples might be:

1. emails

2. different actors

3. patients

4. streaming service customers

25



Supervised and unsupervised learning

we can roughly divide learning tasks into
e supervised learning
e unsupervised learning
supervised learning:
e also have response variables y; for each example
e response variables can be real-valued (regression)
e response variables can be integer-valued (classification)
e objective: create model of unknown function x — y(x)
(z data-vector and y response variable)
unsupervised learning:
® no response variables
e objective: learn information or structure about data

we will talk about supervised learning

26



Linear model

we start with a linear model for the mapping = — y(x)
have data X = [z1,...,2,]

have real-valued responses y = (y1,...,¥m) (¥; € R)
create estimator  with

() = b+ (s,z)

objective: minimize prediction error on data:
n
minimize Z(gj(ml) —yi)?
i=1
let 3 = (s,b), then the problem becomes:

minimize Z((s,xJ +b—y)? = 28—yl

i=1

least squares problem

27



Removing constant term

e what is optimal b7

n

minimize Z((s,m} +b—y)? =28 —y|?

=1

e optimality condition w.r.t. b:
bn"‘z S(Ez i —0 = n Zyz_sxz _g_<87‘%>

where Z and 4 are mean values
o let ¥; =x; —Z and §; = y; — ¥, then it is equivalent to solve

minimize Z 8, &) = | Xs — g|?

where X contains all T;
e we assume from now that average subtracted from data
28



Scaling response variables

what happens if we scale our responses y with a nonzero scalar 7?
the problem becomes

minimize || Xs — yy|? = [7(X2 — y)[? = 12X 2 - y|?
the solution gets scaled with 4!

convention: scale y with norm of y

29



Scaling features

consider the least squares problem (X = [x1 ..., z,])

n
E SiZi — Y
i=1

“select linear combination of features that best approximates y"

2

minimize || Xs — y||* =

big value of s; means feature ¢ important in describing y

for any i replace x; with Z; = 2x;, what happens with solution s?

30



Scaling features

consider the least squares problem (X = [x1 ..., z,])

" 2
minimize || Xs — y||* = Zsle -y
i=1

“select linear combination of features that best approximates y"
big value of s; means feature ¢ important in describing y

for any i replace x; with Z; = 2x;, what happens with solution s?
we get §; = is;, the rest the same

is feature ¢ now less important in prediction?
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Scaling features

consider the least squares problem (X = [x1 ..., z,])

" 2
minimize || Xs — y||* = Zsle -y
i=1

“select linear combination of features that best approximates y"
big value of s; means feature ¢ important in describing y

for any i replace x; with Z; = 2x;, what happens with solution s?
we get §; = is;, the rest the same

is feature ¢ now less important in prediction?

of course not, to avoid this, scale all features to unit norm

(diagonal elements of X7 X become 1 = Jacobi scaling)

30



Example

o fit affine line to data using LS:
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Nonaffine example

o fit affine line to data using LS:
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Nonaffine example

o fit affine line to data using LS:
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Polynomial models

a linear model may not be accurate enough to model relationship
try, e.g., a quadratic model

§a) =b+ (s,2) + > > wimix;
i=1 j=1
for x € R, this becomes
§(x) = b+ sz + wa® = (B, ¢(x))

where 3 = (b, s,w) and ¢(x) = (1,2, 1?)
for z € R2, this becomes

§(z) = b+ 5121 + Som2 + w1y zF + W12T;T; + wggx? = (B, o(x))
where
B = (b, s1, 82, w11, W12, Wa2)
o(x) = (1,21, 22, 7, 1129, 25)

we add new features to problem, still linear in parameters ;
33



Least squares estimate

data model example:
§(x) = b+ 5121 + s2w2 + w17 + Wi2wiT; + woxT = (B, P(x))
least squares estimate
minimize (§(2:) — v:)?> = (8, (z:)) — v:)?
build new data matrix

1 [z1)r [z1)e [za)i[zi)s [@i]i]z1]e  [@1]a[z1)2
X —

1 [xm]l [.’I}m]g [xﬂ”L]l['rm]l [l‘m]l[ajmb [xm]Z[mmb
then LS problem can be written as
minimize || X3 — y||?

lift problem to higher dimensional LS problem
obviously higher order models can be used as well!

34



Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6

ot
T
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Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6 T T T

J=0797k=1

ot
T




Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6 T T T

J=10.335k=2

ot
T




Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6

ot
T

J=10335k=3
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Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6 T T T

J=0328k=4

ot
T




Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6 T T T

J=0324,k=5

ot
T
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Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6 T T T

J=0274,k=6

ot
T
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Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6 T T T
J=0.166,k =7
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Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

G T T T
J=0.161,k =38

5+ -




Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6 T T T

J=0022,k=9

ot
T




Nonaffine example

o fit polynomial of degree k to data using LS (J is cost):

6

ot
T

J =10.002,k =10

35



Evaluating model

e how to evaluate what model order to select?
e cross validation, train polynomial on subset of full data
e keep rest of data (30%) to validate the model

36



Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

6
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=0.729k=1
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=0.703,k =2
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=10.700,k =3




Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=0.724,k = 4
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=0.730,k=5
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

6 T T T
J=10818,k=6
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=0904,k=7
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=10.867,k=8




Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

G T T T
J=1189,k=9
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Validate example

¢ how does fitted polynomial explain test data (J validation cost)?

6 T T T
J=1.285k=10
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Tradeoff

e training error and test error vs polynomial order:

14 T T T

—— training error
12} —— test error




Characterizing the LS solution

by assumption, data matrix X has full column rank
optimal s satisfies (let gradient be zero)

XTXs—XTy=0 & s=X"X)"'x"y
let XTX =UXUT, with ¥ = diag(o1,...,0,) and U unitary
Ur=u-!
then solution to problem is
s=USUN) ' XTy=Us"tuTXTy

n

=3 Lui, XTy)u

i=1
elements with small singular values in X7 X amplified
might amplify noise in those directions
can give rise to overfitting if model of too high complexity

39



Tikhonov regularization

what if we instead solve regularized Least squares problem
minimize || Xs — y||* + A s||?
optimal s satisfies (let gradient be zero)

(XTX+AD)s —XTy=0 < s=XT'X+A)'XTy

o let XTX =UXUT, where 3 = diag(oy,...,0,) and UL = U1
e then I = U(M)UT and solution to problem is

s=(UE+XNUD) Xy =UE+A)'UTXTy

n
=D w fun X w)us

i=1

for small o, factor =~ +, for large o;, factor =~ 01
reduced influence from small singular values in X7X
= reduces noise amplification in those directions
= reduces overfitting when using too complex models

(choose lambda using cross validation)

40



Example

e same example as before
e overfitting is reduced for (too) high complexity models
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e same example as before
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Example

e same example as before
e overfitting is reduced for (too) high complexity models

4.5 T T
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Example

e same example as before
e overfitting is reduced for (too) high complexity models
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Example

e same example as before
e overfitting is reduced for (too) high complexity models
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Example

e same example as before
e overfitting is reduced for (too) high complexity models
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e same example as before

e overfitting is reduced for (too) high complexity models
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Underdetermined systems

so far, we have discussed overdetermined linear systems
what if we have an underdetermined linear system?
that is, X is does not have full column rank

that is, there is an infinite amount of solutions to

minimize || Xs — y||?

using Tikhonov regularization

e we get unique solution
e avoid solutions with large norms (that run away in nullspace of X)
e we can reduce overfitting when using too complex models

42



Feature selection

assume that we have X € R™*" with m < n (or m < n)
that is, (far) fewer examples than features

LS solution not unique (but typically nonzero in all elements)
we would like to select a subset of features to explain data
easier to interpret solution

typically want subset to have cardinality (much) less than m
this leads us to pose the following 1-norm problem

minimize || Xs — y|?
subject to  ||s]jo < k

where k is a positive integer that decides size of subset

43



Convex relaxation

|Is|lo is nonconvex, instead use the convex proxy ||s]|1:

minimize || Xs — y]?
subject to  ||s|s <t

this is equivalent, for some \:
minimize || X's — y||* + Al|s|l1

this problem is called the /asso problem
typically gives sparse solutions
A decided by cross validation and desired sparsity

44



Example

e lasso problem with X € R30%200 for different \
e solution for different lambdas:

0.25 T T
0.2 |+

015

o

o

Z

2
L

solution

e more nonzero elements in solution as A decreases
e note that ||z||p = 30 for small A (i.e., 170 z; = 0)



Solving the lasso

e coordinate descent is most commonly used algorithm

o let i =0, A\; = || XTb||o, which gives s} = 0, proceed as:

1.

A

set )\i+1 < A\

discard variables that will be zero in s}, (screening)

use s}, as warm-start for problem with \; 41

solve lasso with A;11 (using, e.g., coordinate descent)
cross-validate to decide if solution with \; 1 good = return siiﬂ
increase i by 1 and goto 1.
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Lasso and correlation

assume that two equal features exist, e.g., ; = x;41 for some i
let w.l.o.g. i =1, and let s* solve lasso problem for given A

minimize || X's — y||* + A|ls|1

assume that there exist solution with A = s} + s
assume w.l.o.g. that A > 0, then s7,s3 € [0, A]
further any s; € [0, 4], s2 = A — s are optimal

47



Lasso and correlation

o the problem of selecting s; and s, reduces to
minimize |1 (s1 + s2) + b]|% + A|s1| + A|sa|

for an appropriate b

e if s5 = A — s; = quadratic cost unchanged
o rest reduces to

min A\(|s1| + |A — s1])
S1

e optimal if 51 € [0,A] (and s2 = A —s1 € [0,4])

48



Lasso and correlation

if instead x1 and x5 are almost linearly dependent

the problem is of selecting s; and so reduces to
minimize |11 + 2252 + 0% + A|s1| + A|s|

if 1 (slightly) better explains data, sy will be set to 0

want to be sure that both features are selected
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Tikhonov regularization

add tikhonov regularization to the lasso
minimize || X's — y||* 4+ A1]|s]|l1 + A2 s]|?

this problem is called elastic net
assume that x1 = x2 and that s* solves the elastic net
assume that there exist solution A = s7 + s

A

* __ oX __
then s] =s5 = 5
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Tikhonov regularization

e proof: as before, quadratic cost unchanged for s = A — s
e remaining (regularization) part is

min A([s1] + A = s1]) 4+ A2 (st + (A — 1))

| |
0 A

e thatis sy =A/2and s = A — 51 =A/2
e for almost correlated features, both (or none) probably selected
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Group lasso

sometimes we want groups of variables to be 0 or nonzero
introduce s = (s1,...,5p) where s; € R™

the group lasso problem is
P
minimize %(|Xs — b||* + )\Z IIs:l
i=1

in 1D, case (i.e., n; = 1) it reduces to the lasso

prox of each part of group norm is

0 if [|2] < 1

argmin{]|s|| + 3|s — z[|*} =
s z—z/|z| else

there are no kinks saying that individual components should be 0
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Classification

you have a set of labeled data (z;,¥;) € R® = R

the y; are binary, i.e., y; € {—1,1}

the objective is to find a hyperplane that separates points
that is, we want to find s and r such that

(s,xz;) > 0 for all  with y; =1
(s,2;) < 0 for all i with ; = 0

this can model, e.g., a spam filter
x; are number of encountered words or phrases
y; is label for spam or no spam

want to train spam filter (decide s) for future predictions
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Optimization formulation

e ideally, we want a function h(Xs) = > h;({x;, s),y;) with

1 else

S e

e this counts x; that are mis-classified for a certain s

hi(zi,yi) = {

e optimizing this minimizes number of mis-classifications on data
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Convex proxy

e we settle for a convex proxy h(Xs) = > h;((z;, s), y;) with

0 if Ziy; > 1
1—1y;2z; else

hi(zi,yi) = {

o this is called hinge loss
e can be written as max(0,1 — z;y;)

e the classification problem becomes

minimze h(Xs)
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Example

e classification problem with X € R50%2
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Regularization

e add squared 2-norm regularization = support vector machine
minimize h(Xs) + |||

e Tikhonov regularization, reduces overfitting for complex models
e often solved via the dual

e add 1-norm regularization = sparse classification

minimize h(Xs) + ||s||1

e find subset of parameters to split the data
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Sparse example

e sparse classification problem with X € R30%?2
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e gives sparse classifier despite some misclassifications
o (more useful in higher dimensions)
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Nonlinear classification

e can do nonlinear classification by adding features
e done as in normal regression case already covered
e example: features for second order (x172,2%,23) included
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Model predictive control

we want to control a linear dynamical system described by
Tiy1 = Azy + Buy

uy is the input at time ¢, x; is system state at time ¢
state at time t 4+ 1 depends linearly on state and input at ¢

we have limitations on inputs
uy €U

we have desired region for (linear combination of) states
Cr; e X

define desired operating point ="
let u” be consistent input, i.e., such that " = Az" + Bu"
objective: choose {u;}{2, such that z;y; — z, ast — o
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Feedback

we typically have disturbances v; in the model, e.g.,:
Ti41 = AZCt + BUt + vy

therefore we cannot precompute whole sequence {u;}:2,
use feedback: in each sample ¢ compute u;

many ways to compute feedback, e.g., using optimization
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Formulate optimization cost

solve problem as if disturbance nonexistent

want x; to stay close to x” for all future ¢

not necessary on =" because will anyway drift due to disturbance
want u; to stay close to consistent u” for all future ¢

suggested cost (using future estimated states,inputs) &, :

00
>l =" |? + ffue — u'|f?
T=1

might want to penalize individual states and inputs differently:
(o]
D Ml =2 lIE + lue — w17
i=1

1=
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Formulate optimization constraints

e add (estimated) dynamics relation as constraints
i‘t+1:Ai‘t+Bat, t:O,...,OO

with initial condition &g = x; (measurement of current state)

e add constraints on inputs and states

ur €U, Czp € X, t=0,...,00
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Tractable formulation

e the full problem is on the form

(oo}

minimize ZHit—eré—&—Hﬂt—utH%
i=1

subject to #4471 = A%+ By, t=0,...,00
€U, Ci,eX, t=0,...,00
To =14

this is not tractable due to infinite horizon = truncate

N
minimize Z & — 2" |3 + Il — u'%
i=1
subject to  #441 = A%+ Bug, t=0,...,N
uy €U, C.f?te.)(, t=0,....,.N
To =14
if @, R positive semidefinite and U, X convex = problem convex
if R positive definite and system controllable = unique solution
choose N large enough to see all dynamics (and a bit longer)
MPC: iteratively solve this problem and apply g
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Other behavior

e if we want piece-wise constant input, add term:

N-1

[ter1 — G2
t=1

o if we want to maximize, e.g., profit, change objective to

N

Z<p7 xt>

t=1

(gives economic MPC)
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Infeasibility

for some initial condition Z(, the problem might be infeasible
then have no input to send to system
avoid this by having soft constraints on states

then can be shown that problem is never infeasible
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Upper and lower bounds

o if, e.g., X model upper and lower bounds, i.e.

)0 ifz e[l
ta(z) = {oo else

o replace with cost for some large ¢ > 0

0 if z € [l,u]
hMz)=qcll—2) ifz<l

c(z—u) ifz>u

| I
| I
| I
I I
1 I
I I
1| |
[ I
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Desired closed-loop behavior?

e want to guarantee stability, feasibility, and performance
e usually feasibility is hardest
e can formulate tube-based MPC
e then state in tube independent on disturbance in compact set
e require full tube to be feasible
e conservative!
o stability and performance
e consider abstract formulation of MPC-problem
N

N0 = oy (B epieo) ;é(xtut)
e under some assumptions and for some « € (0,1), we have:
VN (zi41) < Vn(xe) + al(xe, ur)
o then telescope summation gives

a U(w,u) < Viv(ao)

t=0

that is £(z¢,us) — 0 as t — oo
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Example

use MPC to control control pitch angle and angle in aircraft
upper and lower bounds on input

soft upper and lower bounds on output

objective: follow references and satisfy constraints

al utl
1 40

n
o

angle of attack

elevator angle
o

-20

0 01 02 03 04 0 01 02 03 04
time (ms) time (ms)

pitch angle

flaperon angle




Other applications

unsupervised learning (just data, no response variables)
portfolio optimization

circuit design

antenna array design

digital filter design

optimal advertising

supply chain management
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