Convex Sets

Pontus Giselsson

Today's lecture

- convex sets
- convex, affine, conical hulls
- closure, interior, relative interior, boundary, relative boundary
- separating and supporting hyperplane theorems
- tangent and normal cones

Euclidean setting

- in this course, we will consider Euclidean spaces ℝⁿ (although most results hold for general real Hilbert spaces)
- examples of Euclidean spaces
 - "standard":

$$\langle x, y \rangle = x^T y$$
 $||x|| = \sqrt{x^T x}$

• square matrices:

$$\langle X, Y \rangle = \operatorname{tr}(X^T Y)$$
 $||X|| = \sqrt{\operatorname{tr}(X^T X)} = ||X||_F$

• skewed Euclidean (*H* positive definite):

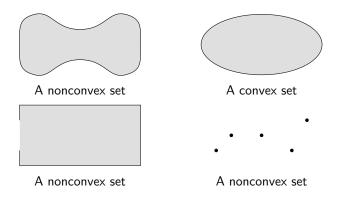
$$\langle x, y \rangle = x^T H y$$
 $||x|| = \sqrt{x^T H x}$

Convex sets

• a set S is convex if for every $x, y \in S$ and $\theta \in [0, 1]$:

$$\theta x + (1 - \theta)y \in S$$

- "every line segment that connect any two points in ${\cal S}$ is in ${\cal S}"$



Intersection and union

- the intersection $C_1 \cap C_2$ of two convex sets C_1, C_2 is convex
- the union $C_1 \cup C_2$ of two convex sets C_1, C_2 need not be convex



(intersection: darker gray, union: lighter gray)

Set sum and set difference

- the set sum is also called the Minkowski sum
- the set sum of C_1 and C_2 is denoted $C_1 + C_2$ and is defined as

$$C_1 + C_2 := \{x \mid x = x_1 + x_2, \text{ with } x_1 \in C_1, x_2 \in C_2\}$$

- set sum of two convex sets is convex
- the set difference is denoted $C_1 C_2$ and is defined as

 $C_1 - C_2 := \{x \mid x = x_1 - x_2, \text{ with } x_1 \in C_1, x_2 \in C_2\}$

set difference of two convex sets is convex

Image and inverse image of set

let

- $L : \mathbb{R}^n \to \mathbb{R}^m$ be an affine mapping, i.e. $Lx = L_0x + y_0$
- $C \subseteq \mathbb{R}^n$ be a convex set
- $D \subseteq \mathbb{R}^m$ be a convex set

then

• the image set L(C)

$$L(C) := \{ y \in \mathbb{R}^m \mid y = Lx, x \in C \}$$

is a convex set in \mathbb{R}^m

• the inverse image set

$$L^{-1}(D) := \{ x \in \mathbb{R}^n \mid Lx = y, y \in D \}$$

is a convex set in \mathbb{R}^n

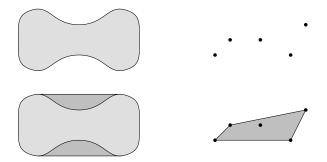
Convex combination and convex hull

• convex combination: of x_1, \ldots, x_k is any points x on the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$$

where $heta_1 + \ldots + heta_k = 1$ and $heta_i \geq 0$

- convex hull conv S: set of all convex combinations of points in S
- what are convex hulls of?



Affine sets

• an affine set V contains the entire (affine) line

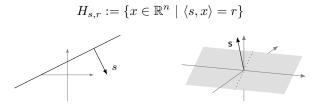
$$\{\alpha x + (1 - \alpha)y \mid \alpha \in \mathbb{R}\}\$$

whenever $x, y \in V$

- · also called affine subspace or affine manifold
- which of the following are affine sets? if affine, what dimension?
 - (a) point: $\{x\}$ (b) line: $\{x \mid x = \alpha x_1 + (1 - \alpha) x_2, x_1 \neq x_2, \alpha \in [0, 1]\}$ (c) line: $\{x \mid x = \alpha x_1 + (1 - \alpha) x_2, x_1 \neq x_2, \alpha \in \mathbb{R}\}$
- (a) and (c) are affine, dimension 0 and 1 respectively

Affine hyperplanes

• an important affine set is the *affine hyperplane* $H_{s,r}$, defined as



- the vector s is called *normal vector* to the hyperplane
- if $s \neq 0$, what is dimension is affine hyperplane in \mathbb{R}^n ? n-1
- any affine set of dimension n-1 can be represented by hyperplane

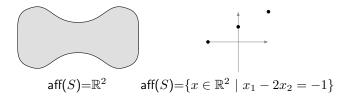
Affine combination and affine hull

• affine combination: of x_1,\ldots,x_k is any points x on the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$$

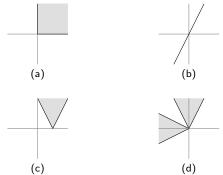
where $\theta_1 + \ldots + \theta_k = 1$

- (affine combination lacks $\theta_i \ge 0$ compared to convex combination)
- affine hull aff(S): set of all affine combinations of points in S
- what is affine hull of the following sets (in \mathbb{R}^2)?



Convex cones

- a cone K contains the half-line $\{\alpha x \mid \alpha > 0\}$ if $x \in K$
- which of the following figures are cones?



- (a), (b), (d) are cones
- a convex cone is a cone that is convex (which are convex cones?)
- (a), (b) convex cones

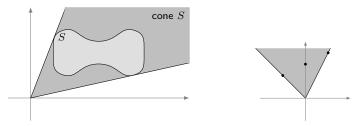
Conical combinations and conical hull

• conical combination: of x_1, \ldots, x_k is any points x on the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$$

where $\theta_1, \ldots, \theta_k \ge 0$

• conical hull cone S: set of all conical combinations of points in S



- note: cone $S = \mathbb{R}^n$ if $0 \in \text{int } S$
- we have cone $S = \mathbb{R}_+(\operatorname{conv} S)$ (see right figure)

Closure

- $\mathit{closure}$ of a set if denoted by cl S
- $x \in \text{cl } S$ if for all $\epsilon > 0$ there exists $y_{\epsilon} \in B_{\epsilon}(x)$ with $y_{\epsilon} \in S$, where

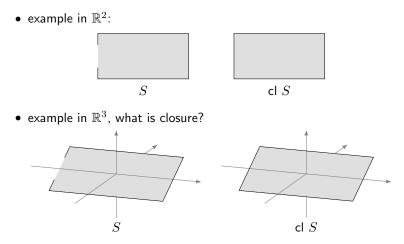
$$B_{\epsilon}(x) = \{ y \in \mathbb{R}^n \mid ||y - x|| < \epsilon \}$$

- (the point y_{ϵ} may be x itself \Rightarrow cl $S \supseteq S$)
- the closure of $S \subseteq \mathbb{R}^n$ is the set of such x:

 $\mathsf{cl}\ S = \{ x \in \mathbb{R}^n \mid \forall \epsilon > 0, \exists y_\epsilon \in B_\epsilon(x) \text{ such that } y_\epsilon \in S \}$

• a set S is closed iff cl S=S

Closure – Examples



• embedding in higher dimensional spaces does not affect closure

Interior

- interior of a set $S\subseteq \mathbb{R}^n$ is denoted int S
- $x \in \text{int } S$ if there is $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq S$, where

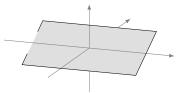
$$B_{\epsilon}(x) = \{ y \in \mathbb{R}^n \mid ||y - x|| < \epsilon \}$$

• the interior is the set of such *x*:

int
$$S = \{x \in S \mid B_{\epsilon}(x) \subseteq S\}$$

Interior – Examples

- example in \mathbb{R}^2 :
- example in \mathbb{R}^3 , what is interior?



- int $S = \emptyset$, reason: no 3D ball fits in S since 2D
- need something to take care of this

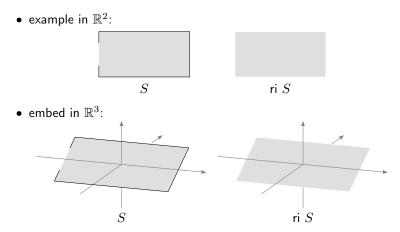
Relative interior

- relative interior of a set ${\cal S}$ if denoted relint ${\cal S}$ or ri ${\cal S}$
- $x \in \operatorname{ri} S$ if there is $\epsilon > 0$ such that $B_{\epsilon}(x) \cap \operatorname{aff} S \subseteq S$
- $\bullet\,$ interior with respect to the affine hull where S lies
- the relative interior is the set of such x:

 $\mathsf{ri}\ S = \{x \in S \mid B_{\epsilon}(x) \cap \mathsf{aff}\ S \subseteq S\}$

- note:
 - ri $S \subseteq S$
 - if S nonempty and convex, then ri $S \neq \emptyset$
 - if aff $S = \mathbb{R}^n$, then ri S = int S
- concept of relative interior important for convex analysis!

Relative interior – Examples



relative interior nonempty, but interior empty

what is interior and relative interior of the singleton {x} ⊂ ℝⁿ?
(ri {x} = {x} and int {x} = Ø, since aff {x} = {x})

Intersection results

let S_1 and S_2 be convex and satisfy ri $S_1\cap \operatorname{ri}\,S_2\neq \emptyset,$ then

• the relative interiors satisfy

$$\mathsf{ri}\ (S_1 \cap S_2) = \mathsf{ri}\ S_1 \cap \mathsf{ri}\ S_2$$

• the closures satisfy

$$\mathsf{cl}\ (S_1 \cap S_2) = \mathsf{cl}\ S_1 \cap \mathsf{cl}\ S_2$$

• can you construct a counter-example for relative interior:



• (qualification ri $S_1 \cap$ ri $S_2 \neq \emptyset$ will be very important later)

Product spaces

for $i = 1, \ldots, k$, let $C_i \in \mathbb{R}^{n_i}$ be convex sets, then

• the relative interiors satisfy

$$\mathsf{ri} \ (C_1 \times \cdots \times C_k) = (\mathsf{ri} \ C_1) \times \cdots \times (\mathsf{ri} \ C_k)$$

• the closures satisfy

$$\mathsf{cl} \ (C_1 \times \cdots \times C_k) = (\mathsf{cl} \ C_1) \times \cdots \times (\mathsf{cl} \ C_k)$$

Image and inverse image of set

let

- L : $\mathbb{R}^n \to \mathbb{R}^m$ be an affine mapping, i.e. $Lx = L_0x + y_0$
- $C \subseteq \mathbb{R}^n$ be a convex set
- $D \subseteq \mathbb{R}^m$ be a convex set

then

• for the image L(C), we have

$$\mathsf{ri}[L(C)] = L(\mathsf{ri}\ C), \qquad \mathsf{cl}[L(C)] = L(\mathsf{cl}\ C)$$

• for the inverse image $L^{-1}(D)$, we have

$${\sf ri}[L^{-1}(D)] = L^{-1}({\sf ri}\ D), \qquad {\sf cl}[L^{-1}(D)] = L^{-1}({\sf cl}\ D)$$

Boundary and relative boundary

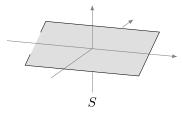
• the boundary of ${\cal S}$ is denoted by bd ${\cal S}$ and is defined as:

 $\mathsf{bd}\ S:=\mathsf{cl}\ S\backslash\mathsf{int}\ S$

• since interior often empty, we also define relative boundary:

$$\mathsf{rbd}\ S = \mathsf{cl}\ S \setminus \mathsf{ri}\ S$$

• what is boundary and relative boundary in figure?



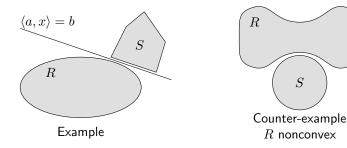
(boundary: cl S, relative boundary: full empty rectangle)

Separating hyperplane theorem

- suppose that \boldsymbol{R} and \boldsymbol{S} are two non-intersecting convex sets
- then there exists $a \neq 0$ and b such that

$$\begin{aligned} \langle a,x\rangle &\leq b & \text{ for all } x \in R \\ \langle a,x\rangle &\geq b & \text{ for all } x \in S \end{aligned}$$

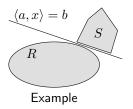
- the hyperplane $\{x ~|~ \langle a, x \rangle = b\}$ is called separating hyperplane



A strictly separating hyperplane theorem

- suppose that R and S are non-intersecting closed and convex sets and that one of them is compact (closed and bounded)
- then there exists $a \neq 0$ and b such that

$$\begin{aligned} \langle a,x\rangle < b & \qquad \text{for all } x \in R \\ \langle a,x\rangle > b & \qquad \text{for all } x \in S \end{aligned}$$



$$R = \{(x, y) \mid y \ge 1/x, x > 0\}$$

$$S = \{(x, y) \mid y < 0\}$$

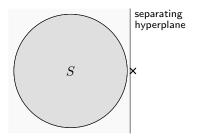
Counter example ${\cal S}$ and ${\cal R}$ not bounded

Consequence

a closed convex set S is the intersection of all halfspaces that contain it

proof:

- $\bullet~$ let H be the intersection of all halfspaces containing S
- \Rightarrow : obviously $x \in S \Rightarrow x \in H$
- ⇐: assume x ∉ S, since S closed and convex and x compact (a point), there exists a strictly separating hyperplane, i.e., x ∉ H (see figure)



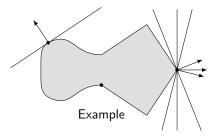
Supporting hyperplanes

• the hyperplane $H_{s,r}=\{y ~|~ \langle s,y\rangle=r\}$ supports S at $x\in \mathsf{bd}~S$ if

$$\langle s,y
angle \leq r ext{ for all } y\in S ext{ and } \langle s,x
angle =r$$

i.e., if S is in a halfspace delimited by ${\cal H}_{s,r}$ that passes through x

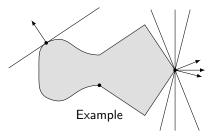
- such hyperplanes are referred to as supporting hyperplanes
- (note: we only define supporting hyperplanes for boundary points)



Supporting hyperplane theorem

Let S be a nonempty convex set and let $x\in \mathrm{bd}(S).$ Then there exists a supporting hyperplane to S at x.

- proof
 - $int(S) \neq \emptyset$: apply separating hyperplane theorem to the sets $\{x\}$ and int(S)
 - $\operatorname{int}(S) = \emptyset$: then $\operatorname{bd} S = S$ and S in affine subspace with dim aff $S \leq n-1$, all affine subspaces of dim n-1 are hyperplanes, therefore there exist a hyperplane $H_{s,r}$ such that $S = \operatorname{bd} S \subseteq H_{s,r}$ and hence in half-space defined by hyperplane
- can define for points on rbd ${\boldsymbol{S}}$ instead, degenerate case disappears
- does not hold for nonconvex sets

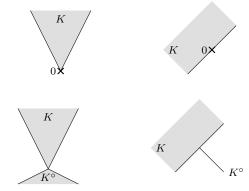


Polar cones

• the polar cone K° to the convex cone K is defined as:

$$K^{\circ} := \{ s \in \mathbb{R}^n \mid \langle s, x \rangle \le 0 \text{ for all } x \in K \}$$

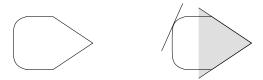
- it is the set of normal vectors to supporting hyperplanes to K at 0
- the bipolar cone satisfies $K^{\circ\circ}:=(K^\circ)^\circ=\operatorname{cl} K$
- what is polar cone of



Canonical approximations of sets

· smooth sets can locally be approximated by affine manifold

• for nonsmooth sets, we can approximate with a cone



(reduces to affine manifold in smooth case)

Tangent cone operator

- the cone approximation to set S is called a *tangent cone*
- for *closed and convex* sets, the tangent cone $T_S(x)$ is defined as

$$T_S(x) = \overline{\operatorname{cone}} \ (S - \{x\}) = \operatorname{cl} \ \mathbb{R}_+(S - \{x\})$$

i.e., shift current point to origin, and form conical hull

• $T_S(x)$ is often visualized by $T_S(x) + \{x\}$ (i.e., shifted to x)

Normal cone operator

• the normal cone operator to a (maybe nonconvex) set S is

$$N_S(x) = \begin{cases} \{s \mid \langle s, y - x \rangle \le 0 \text{ for all } y \in S \} & \text{if } x \in S \\ \emptyset & \text{else} \end{cases}$$

i.e., vectors that form obtuse angle between s and all y - x, $y \in S$ • if $x \in \text{int } S$, what is $N_S(x)$? $N_S(x) = 0$

Relation to supporting hyperplanes

• since $N_S(\text{int }S) = 0$, the normal cone can be written as

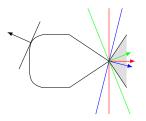
$$N_{S}(x) = \begin{cases} \{s \mid \langle s, y \rangle \leq \langle s, x \rangle \text{ for all } y \in S \} & \text{if } x \in S \cap \mathsf{bd } S \\ 0 & \text{if } x \in \mathsf{int } S \\ \emptyset & \text{else} \end{cases}$$

- on boundary: $N_S(x)$ is set of normals to supporting hyperplanes
- if S convex, we know that $N_S(x) \neq \emptyset$ for all $x \in S \cap bd S$ (supporting hyperplane theorem)

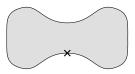
Examples

we consider boundary points only

• a convex example:



• a nonconvex example



 $(N_S(x) = \emptyset$ at marker since no supporting hyperplane)

Relation between tangent and normal cones

- $\bullet\,$ suppose that S is nonempty closed and convex
- what is the relation between $T_S(x)$ and $N_S(x)$ for $x \in S$?
- they are polar to each other, $N_S(x) = (T_S(x))^\circ$:

$$N_{S}(x) = \{s \mid \langle s, y - x \rangle \leq 0 \text{ for all } y \in S\}$$

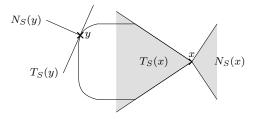
= $\{s \mid \langle s, d \rangle \leq 0 \text{ for all } d \in (S - \{x\})\}$
= $\{s \mid \langle s, d \rangle \leq 0 \text{ for all } d \in \text{cone } (S - \{x\})\}$
= $\{s \mid \langle s, d \rangle \leq 0 \text{ for all } d \in \overline{\text{cone }} (S - \{x\})\}$
= $\{s \mid \langle s, d \rangle \leq 0 \text{ for all } d \in T_{S}(x))\}$
= $(T_{S}(x))^{\circ}$

- proof $T_S(x) = (N_S(x))^\circ$: since $T_S(x)$ is closed by definition: $T_s(x) = (T_s(x)^\circ)^\circ = N_S(x)^\circ$
- therefore, for convex sets, the tangent cone can be defined as

$$T_S(x) = \{ d \mid \langle s, d \rangle \le 0 \text{ for all } s \in N_S(x) \}$$

Graphical representation

- example with normal cones and tangent cones for a convex set \boldsymbol{S}
- cones shifted corresponding points \boldsymbol{x} and \boldsymbol{y}
- we see that the cones are polar



A calculus rule

• for $x \in S_1 \cap S_2$ with S_1, S_2 closed and convex, there holds:

 $T_{S_1 \cap S_2} \subseteq T_{S_1}(x) \cap T_{S_2}(x), \quad N_{S_1 \cap S_2} \supseteq N_{S_1}(x) + N_{S_2}(x)$

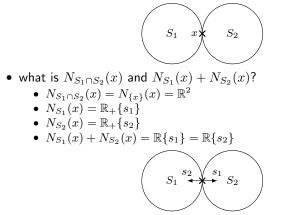
• under the additional constraint qualification that

 $(\mathsf{ri}\ S_1) \cap (\mathsf{ri}\ S_2) \neq \emptyset$

we have equality (this will be shown later!)

Example constraint qualification

• example that indicates constraint qualification is needed:



• constraint qualification important for many results in convex analysis