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Today’s lecture

convex sets

convex, affine, conical hulls

closure, interior, relative interior, boundary, relative boundary
separating and supporting hyperplane theorems

tangent and normal cones



Euclidean setting

e in this course, we will consider Euclidean spaces R"
(although most results hold for general real Hilbert spaces)

e examples of Euclidean spaces
e ‘“standard”:

(wy) =2y 2] = VaTz
® square matrices:
(X,Y) = u(x"Y) X1 = Vir(XTX) = [ X]|r
o skewed Euclidean (H positive definite):

(@,y) =" Hy |zl = vVt Hz



Convex sets

e aset S is convex if for every z,y € S and 6 € [0, 1]:
bx+(1—-0)yesS

e ‘“every line segment that connect any two points in S is in S"

A nonconvex set A convex set

A nonconvex set A nonconvex set



Intersection and union

e the intersection C7; N Cy of two convex sets C, Cy is convex

e the union C; U C5 of two convex sets C', Cs need not be convex

(intersection: darker gray, union: lighter gray)



Set sum and set difference

the set sum is also called the Minkowski sum
the set sum of C; and Cs is denoted C; + Cy and is defined as

C1+Cy = {l | T = x1 + 9, with a1 Gcl,$2 GCQ}

set sum of two convex sets is convex

the set difference is denoted C7; — C5 and is defined as
Cl — CQ = {ZL’ | Tr =1 — T, with z; € Cl,l'g c CQ}

set difference of two convex sets is convex



Image and inverse image of set

let

o [ : R™ — R™ be an affine mapping, i.e. Lx = Loz + yo
e (' C R"™ be a convex set

e D C R™ be a convex set
then
e the image set L(C)
L(C)={yeR™ |y=Lz,z € C}

is a convex set in R™

e the inverse image set
L YD):={z €R" | Lz =y,y € D}

is a convex set in R™



Convex combination and convex hull

e convex combination: of x1,...,xx is any points x on the form
T =0121 + 029 + ...+ Opxp

where 01 +...+ 0, =1and 0; >0
e convex hull conv S: set of all convex combinations of points in .S
e what are convex hulls of?



Affine sets

an affine set V' contains the entire (affine) line
{az+(1-a)y | a € R}

whenever z,y € V
also called affine subspace or affine manifold
which of the following are affine sets? if affine, what dimension?

(a) point: {z}
(b) line: {z | z = az1 + (1 — @)z2,71 # x2, € [0, 1]}
(c) line: {z | z = az1 + (1 — @)z2, 71 # T2, € R}

(a) and (c) are affine, dimension 0 and 1 respectively



Affine hyperplanes

e an important affine set is the affine hyperplane H ., defined as

Hs,r = {I S | <S,QE> = 71}

o the vector s is called normal vector to the hyperplane
o if s # 0, what is dimension is affine hyperplane in R"? n — 1

e any affine set of dimension n — 1 can be represented by hyperplane
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Affine combination and affine hull

affine combination: of z1,...,zy is any points x on the form
T =01x1 + 020+ ...+ 0Lz

where 0 +...4+ 0, =1
(affine combination lacks 6; > 0 compared to convex
combination)

affine hull aff(S): set of all affine combinations of points in S
what is affine hull of the following sets (in R?)?

Aff(S)=R?  aff(S)={x € R? | 21 — 225 = —1}
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Convex cones

e a cone K contains the half-line {ax | « > 0} if v € K

o which of the following figures are cones?

(c)
e (a), (b), (d) are cones

e a convex cone is a cone that is convex (which are convex cones?)

e (a), (b) convex cones

(d)
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Conical combinations and conical hull

e conical combination: of z1,...,xy is any points z on the form
= 0121 + 029 + ...+ Opxp

where 01,...,0, >0

e conical hull cone S: set of all conical combinations of points in .S

cone S

e note: cone S=R"if0€int S
e we have cone S = R (conv S) (see right figure)
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Closure

closure of a set if denoted by cl S
x € cl Sif for all € > 0 there exists y. € Bc(x) with y. € S, where

Be(z) ={y e R" | ly —z[| <€}

(the point y. may be z itself = cl .S D 5)
the closure of S C R"™ is the set of such z:

c S={zxeR"|Ve>0,3y. € Be(x) such that y. € S}

aset Sis closediffcl S =5
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Closure — Examples

e example in R?:

—

L
S c S

e example in R3, what is closure?

c S

e embedding in higher dimensional spaces does not affect closure
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Interior

e interior of a set S C R" is denoted int S
e 1z €int S if there is € > 0 such that B.(xz) C S, where

Be(z) ={y e R" | |ly — z[| < ¢}
e the interior is the set of such x:

int S={x €S| B(x)CS}
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Interior — Examples

example in R?:

—

]
S int S

example in R3, what is interior?

int S = (), reason: no 3D ball fits in S since 2D
need something to take care of this
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Relative interior

relative interior of a set S if denoted relint S or ri S
x €ri S if there is € > 0 such that B.(x) Naff S C S
interior with respect to the affine hull where S lies
the relative interior is the set of such x:

rnS={xeS| B(xr)Nnaff SC S}

note:
e ri SCS
e if S nonempty and convex, then ri S # ()
e if aff S =R", thenri S =int S

concept of relative interior important for convex analysis!
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Relative interior — Examples

e example in R?:

—

[
S ri S

e embed in R3:

relative interior nonempty, but interior empty
e what is interior and relative interior of the singleton {z} C R"?

(ri {z} = {z} and int {z} =0, since aff {z} = {z})
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Intersection results
let S; and Sy be convex and satisfy ri S; Nri Sy # (), then
e the relative interiors satisfy
ri(S1NS2)=ri SyNri Sy
o the closures satisfy
c (S1NSy) =clSincl Sy

e can you construct a counter-example for relative interior:

St - Sy
T

riSy NriSy =0 ri(S1 N S2) = {z}

e (qualification ri Sy Nri Sg # () will be very important later)
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Product spaces

fori=1,...,k, let C; € R™ be convex sets, then
e the relative interiors satisfy
ri(Cy x - xCg)=(ri C1) x - x (ri Cf)
o the closures satisfy

cd (Cy x - xCf)=(cl Cp) x -+ x (cl C)
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Image and inverse image of set

let

e [ : R™ — R™ be an affine mapping, i.e. Lx = Loz + 1o
e (' C R"™ be a convex set

e D CR™ be a convex set
then
e for the image L(C'), we have
HIL(C)] = L(ri C), c[L(C)] = L(cl ©)
e for the inverse image L~1(D), we have

rlL~Y(D) = L~ (ri D), d[L7Y(D)] = L"(cl D)
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Boundary and relative boundary

e the boundary of S is denoted by bd S and is defined as:
bd S :=cl S\int S
e since interior often empty, we also define relative boundary:

rbd S =cl S\ri S

e what is boundary and relative boundary in figure?

(boundary: cl S, relative boundary: full empty rectangle)
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Separating hyperplane theorem
e suppose that R and S are two non-intersecting convex sets

e then there exists a # 0 and b such that

(a,z) <b forallz € R
(a,z) > b forallz € S

e the hyperplane {z | (a,x) = b} is called separating hyperplane

(a,z) =

Counter-example
Example R nonconvex
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A strictly separating hyperplane theorem

suppose that R and S are non-intersecting closed and convex sets
and that one of them is compact (closed and bounded)

then there exists a # 0 and b such that

(a,z) <b forallz € R
(a,z) > b forall z € S

R={(w,y) |y = 1/z,z >0}

o @
Counter example
Example S and R not bounded
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Consequence

a closed convex set S is the intersection of all halfspaces that contain it

proof:

e let H be the intersection of all halfspaces containing S

e =: obviouslyzr € S=x € H

e <: assume x € S, since S closed and convex and x compact (a
point), there exists a strictly separating hyperplane, i.e., x ¢ H
(see figure)

separating
hyperplane
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Supporting hyperplanes

e the hyperplane H;, = {y | (s,y) = r} supports S at x € bd § if
(s,y) <rforallyeS and (s,z)=r

i.e., if Sisin a halfspace delimited by H, , that passes through x
e such hyperplanes are referred to as supporting hyperplanes

e (note: we only define supporting hyperplanes for boundary points)

Example
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Supporting hyperplane theorem

Let S be a nonempty convex set and let € bd(S). Then there exists
a supporting hyperplane to S at x.

e proof
e int(S) # 0: apply separating hyperplane theorem to the sets {z}
and int(S)
e int(S) = 0: then bdS = S and S in affine subspace with
dim aff S < n — 1, all affine subspaces of dim n — 1 are
hyperplanes, therefore there exist a hyperplane Hy , such that
S =bd S C H;, and hence in half-space defined by hyperplane
e can define for points on rbd S instead, degenerate case disappears
e does not hold for nonconvex sets

Example
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Polar cones

the polar cone K° to the convex cone K is defined as:
K°:={seR" | (s,z) <Oforallz e K}

it is the set of normal vectors to supporting hyperplanes to K at 0
the bipolar cone satisfies K°° := (K°)° =cl K
what is polar cone of

K
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Canonical approximations of sets

e smooth sets can locally be approximated by affine manifold

0O C

e for nonsmooth sets, we can approximate with a cone

— (D

(reduces to affine manifold in smooth case)
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Tangent cone operator

e the cone approximation to set S is called a tangent cone

e for closed and convex sets, the tangent cone Ts(z) is defined as
Ts(z) =cone (S — {z}) =cd Ry (S — {z})

i.e., shift current point to origin, and form conical hull

Ts(x) + {«}

e Tg(x) is often visualized by Ts(x) + {z} (i.e., shifted to x)
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Normal cone operator

e the normal cone operator to a (maybe nonconvex) set S is

sl(s,y—x)<Oforallye S} ifzesS
Ng(x):{é : > } else

i.e., vectors that form obtuse angle between s and all y —z, y € S
o if x €int S, what is Ng(x)? Ng(z) =0
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Relation to supporting hyperplanes

e since Ng(int S) = 0, the normal cone can be written as

{s| {s,y) < {(s,z) forallye S} ifxeSNbdS
Ng(x) =<0 if z €int S

1] else

e on boundary: Ng(x) is set of normals to supporting hyperplanes

e if S convex, we know that Ng(z) # 0 for all z € SNbd S
(supporting hyperplane theorem)
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Examples

we consider boundary points only

® a convex example:

® a nonconvex example

(Ng(x) = () at marker since no supporting hyperplane)
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Relation between tangent and normal cones

e suppose that S is nonempty closed and convex
e what is the relation between Ts(x) and Ng(z) for x € S7
e they are polar to each other, Ng(z) = (Ts(z))°:

Ns(z) ={s | (s,y —x) <0forally e S}

={s| (s,d) <0forallde (S—{z})}
={s ] (s,d) <0 forall d € cone (S —{z})}
={s| (s,d) <0 forall d € cone (S — {z})}
={s| (s,d) <0forall deTs(x))}
= (Ts(x))°

e proof Ts(z) = (Ng(x))°: since Ts(x) is closed by definition:

Ts(z) = (Ts(2)°)° = Ns(2)°
o therefore, for convex sets, the tangent cone can be defined as

Ts(z) ={d | (s,dy <0 for all s € Ng(x)}
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Graphical representation

e example with normal cones and tangent cones for a convex set S
e cones shifted corresponding points = and y

e we see that the cones are polar

Ns(y)

Ns(x)
Ts(y)
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A calculus rule

o for x € S1 NSy with S1,S5 closed and convex, there holds:
Ts,ns, € Ts,(x) NTs,(x), Nsyns, 2 Ns, (z) + N, ()
e under the additional constraint qualification that
(ri S1)N(ri S2) #0

we have equality (this will be shown later!)
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Example constraint qualification

e example that indicates constraint qualification is needed:

e what is Ng,ns,(z) and Ng, (z) + Ng,(x)?
® NSlﬁsz (x) = N{x}(w) =R

Nsl( R+{S1}

Ns,(x) = Ry{s2}

Ns,; (z) + Ns, (x) = R{s1} = R{s2}

e constraint qualification important for many results in convex
analysis

38



