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Today’s lecture

• lower semicontinuity, closure, convex hull

• convexity preserving operations
• precomposition with affine mapping
• infimal convolution
• image function
• supremum of convex functions (example: conjugate functions)

• support functions

• sublinearity

• directional derivative
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Domain

• assume that f : X → R is finite-valued

• then X ⊆ Rn is the domain of f
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Extending the domain

• we want to avoid to explicitly state domain in f : X → R
• extend domain of functions with X 6= Rn by constructing:

f̂(x) =

{
f(x) if x ∈ X
∞ else

(extension works well in convex analysis)

• obviously f̂ : Rn → R ∪ {+∞}
• define R := R ∪ {+∞}
• can compare function values on all of Rn using R arithmetics

(∞ =∞ and c <∞ for all c ∈ R)
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Standing assumptions

throughout this course we assume that all functions f :

• may be extended valued, i.e., have range R
• have extended domain, Rn

• are proper, i.e., f 6≡ +∞
• are minorized by an affine function, i.e., there exist s ∈ Rn and
r ∈ R such that f(x) ≥ 〈s, x〉+ r for all x or

r ≤ inf
x
{f(x)− 〈s, x〉} or 0 ≤ inf

x
{f(x)− 〈s, x〉 − r}

example, affine minorizer:

f(x)

〈s, x〉+ r

5



Effective domain

• the effective domain of f : Rn → R is the set

dom f = {x ∈ Rn | f(x) <∞}
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Convex functions

• function f : Rn → R is convex if for all x, y ∈ Rn and θ ∈ [0, 1]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

(in extended valued arithmetics)

• “every convex combination of two points on the graph of f is
above the graph”

a nonconvex function a convex function
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Comparison to other definition

• a function f : X → R (without extended domain) is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

holds for all x, y ∈ X and θ ∈ [0, 1], and if X is convex

• equivalent to definition for functions with extended domain

• for f : Rn → R, convexity of dom f is implicit in convexity
definition
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Why convexity?

• local minima are also global minima!

• ⇒ can search for local minima to minimize the function

• ⇒ much easier to devise algorithms
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Jensen’s inequality

• assume that f : Rn → R is convex

• then for all collections {x1, . . . , xk} of points

f

(
k∑
i=1

θixi

)
≤

k∑
i=1

θif(xi)

where θi ≥ 0 and
∑k
i=1 θi = 1

• for k = 2 this reduces to the convexity definition
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Strict and strong convexity

• a function is strictly convex if convex with strict inequality

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for all x 6= y and θ ∈ (0, 1)

• a function is σ-strongly convex if there exists σ > 0 such that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)‖x− y‖

2

for every x, y ∈ Rn and θ ∈ [0, 1]

• strongly convex functions are strictly convex

• a function is σ-strongly convex iff f − σ
2 ‖ · ‖

2 is convex

• prove by inserting f − σ
2
‖ · ‖2 in convexity definition

• a strongly convex function has at least curvature σ
2 ‖ · ‖

2
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Uniqueness of minimizers

• if a function is strictly (strongly) convex the minimizers are unique

• proof: assume that x1 6= x2 and that both satisfy

x2 = x1 = argmin
x

f(x)

i.e., f(x1) = f(x2) = infx f(x), then

f( 1
2x1 + 1

2x2) < 1
2 (f(x1) + f(x2)) = inf

x
f(x)

contradiction!

• (minimizer might not exist for strictly convex, but always for
strongly convex)
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Smoothness

• a convex function is β-smooth if there exists β > 0 such that

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β
2 θ(1− θ)‖x− y‖

2

for every x, y ∈ Rn and θ ∈ [0, 1] (and convexity definition holds)

• inequality flipped compared to strong convexity

• a convex function f is β-smooth iff β
2 ‖ · ‖

2 − f is convex

• a smooth function is continuously differentiable

• (sometimes higher order differentiability required in smoothness
definitions)
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Graphs and epigraphs

• the graph of f is the set of all couples (x, f(x)) ∈ Rn × R
• the epigraph of a (proper) function f is the nonempty set

epi f = {(x, r) | f(x) ≤ r}

• (note dimension of epi f is n+ 1 when dimension of dom f is n)

epif
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Epigraphs and convexity

• let f : Rn → R
• then f is convex if and only epi f is a convex set in Rn × R

epif

nonconvex

epif

convex
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Level-sets

• a (sub)level-set Sr(f) to the function f is defined as

Sr(f) = {x ∈ Rn | f(x) ≤ r}

Sr(f)

r

(slice epigraph and project back to Rn))

• level-sets of convex functions are convex

• even if all level-sets convex, function might be nonconvex

• if all level-sets convex, function is quasi-convex
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Level-sets and constraint qualification

• assume that f : Rn → R is convex (and finite-valued)

• Slater’s constraint qualification assumes existence of x̄ such that

f(x̄) < 0

(0 is often used to define constraints, any level can be used)

• this clearly implies that the level-set S0(f) is nonempty

• in fact, it implies the following statements:
• cl {x | f(x) < 0} = {x | f(x) ≤ 0}
• {x | f(x) < 0} = int {x | f(x) ≤ 0}
• consequently: bd {x | f(x) ≤ 0} = {x | f(x) = 0}
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Affine functions

• affine functions f(x) = 〈s, x〉 − b
• for any x0 ∈ Rn affine functions can be written as

f(x) = f(x0) + 〈s, x− x0〉

(since b = 〈s, x0〉 − f(x0))

• epigraph of affine function is closed half-space with
non-horizontal normal vector (s,−1) ∈ Rn × R

epif = {(x, r) : r ≥ 〈s, x〉 − b}
= {(x, r) : b ≥ 〈(s,−1), (x, r)〉}

(s,−1)

〈s, x〉 − b = f(x0) + 〈s, x− x0〉
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Affine minorizers

• any proper, convex f is minorized by some affine function
• more precisely: for any x0 ∈ ri dom f , there is s such that

f(x) ≥ f(x0) + 〈s, x− x0〉
which coincides with f at x0

• i.e., there is an affine function whose epigraph covers epi f
• convex epigraph supported by non-vertical hyperplanes

• normal vector s is called subgradient, much more on this later
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Lower semicontinuity

• a function f : Rn → R is lower semicontinuous if

lim inf
y→x

f(y) ≥ f(x)

• consider the following function f which is not defined on x = 0:

• construct a lower semicontinuous function

g(x) =

{
f(x) if x 6= 0

c else

what can c be? at or below lower circle
• (upper semicontinuous if inequality flipped)

20



Lower semicontinuity

The following are equivalent for f : Rn → R:

• f is lower semicontinuous (l.s.c.)

• epi f is a closed set

• all level-sets Sr(f) are closed (may be empty)

will call lower semicontinuous functions closed

l.s.c. not l.s.c.
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Closure (lower-semicontinuous hull)

• the closure cl f of the function f is defined as

epi(clf) := cl(epif)

• a function is closed iff cl f = f , i.e., if epi(f) := cl(epif)

• the closure is really the lower-semicontinuous hull:

cl f = sup{h(x) | h lower-semicontinuous , h ≤ f}

• what is the closure of g1?

g1 cl g1
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Outer construction

• the closure of a convex function f is the supremum of all
minorizing affine functions, i.e., cl f = g where

g(x) = sup
s,b
{〈s, x〉 − b : 〈s, y〉 − b ≤ f(y) for all y ∈ Rn}

• let Σ1 be all non-vertical hyperplanes that support epi f (solid)
• epi g is intersection of halfspaces defined by hyperplanes in Σ1

• let Σ0 be all vertical hyperplanes that support epi f (dashed)
• cl(epif) is intersection of all halfspaces defined by Σ1 and Σ0

(consequence of strict separating hyperplane theorem)
• prove result by showing that halfspaces defined by Σ0 redundant

(i.e., dashed line not needed, then epi(clf) = cl(epif))
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Continuity for convex functions

• for convex f , cl f(x) = f(x) for x ∈ ri dom f

• for finite-valued convex functions, ri dom f = Rn ⇒ l.s.c.

• we can say more: convex f are locally Lipschitz continuous

• for each compact convex subset S ⊆ ri dom f there exists L(S):

|f(x)− f(y)| ≤ L(S)‖x− y‖ for all x and y in S

• consequence: convex functions f are continuous on ri dom f
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Why closed functions?

• a closed function defined on a nonempty closed and bounded set
is bounded below and attains its infimum

• generalization of Weierstrass extreme value theorem

inf attained inf not attained

• left figure: closed, right figure: not closed

• (supremum not attained, needs upper semicontinuity)
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Convex hull

• the convex hull is the largest convex minorizing function, i.e.:

conv f(x) = sup{h(x) : h convex , h ≤ f}

• the closed convex hull:

conv f(x) = sup{h(x) : h closed convex , h ≤ f}

• the closed convex hull can equivalently be written as:

conv f(x) = sup
s,b
{〈s, x〉 − b : 〈s, x〉 − b ≤ f(y) for all y ∈ Rn}

(supremum of affine functions minorizing f)
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Convex hull – Example

• the figure shows the closed convex hull

conv f(x) = sup
s,b
{〈s, x〉 − b : 〈s, x〉 − b ≤ f(y) for all y ∈ Rn}

of a nonconvex function

f(x)

f(1)
conv f(1)
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First-order conditions for convexity

• a differentiable function f : Rn → R is convex iff

f(y) ≥ f(x) + 〈∇f(x), y − x〉

holds for all x, y ∈ Rn

f(y)

f(x) + 〈∇f(x), y − x〉
(x, f(x))

• “function has affine minorizer defined by ∇f”
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Second-order conditions for convexity

• a twice differentiable function is convex if and only if

∇2f(x) � 0

for all x ∈ Rn (i.e., the Hessian is positive semi-definite)

• “the function has non-negative curvature”
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Examples of convex functions

• indicator function

ιS(x) =

{
0 if x ∈ S
∞ else

[closed] and convex iff S [closed] and convex

• norms: ‖x‖
• norm-squared: ‖x‖2

• (shortest) distance to convex set: distS(y) = infx∈S{‖x− y‖}
• linear functions: f(x) = 〈q, x〉
• quadratic forms: f(x) = 1

2 〈Qx, x〉 with Q positive semi-definite
linear operator

• matrix fractional function: f(x, Y ) = xTY −1x
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How to conclude convexity

different ways to conclude convexity

• use convexity definition

• show that epigraph is convex set

• use first or second order condition for convexity

• show that function built by convexity preserving operations (next)
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Operations that preserve convexity

• assume that fj are convex for j = {1, . . . ,m}
• assume that there exists x such that fj(x) <∞ for all j

• then positive combination

f =

m∑
j=1

tjfj

with tj > 0 is convex

• “proof”: add convexity definitions

tjfj(θx+ (1− θ)y) ≤ tj(θfj(x) + (1− θ)fj(y))
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Precomposition with affine mapping

• let f be convex and L be affine, then

(f ◦ L)(x) := f(L(x))

is convex

• if ImL ∩ domf 6= ∅ then f ◦ L proper
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Infimal convolution

• the infimal convolution of two functions f, g is defined as

(f � g)(x) := inf
y∈Rn
{f(y) + g(x− y)}

• convex if f and g are convex with a common affine minorizer

• closed and convex if f, g closed and convex and, e.g.:
• f(x)→∞ as ‖x‖ → ∞ (coercive) and g bounded from below
• f(x)/‖x‖ → ∞ as ‖x‖ → ∞ (super-coercive)

• in this case, infimal convolution is set addition of epi-graphs
(in other case, strict epigraphs are equal)
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Moreau envelope

• let γ > 0 and f be closed and convex
• infimal convolution with g = 1

2γ ‖ · ‖
2 is called Moreau envelope

(f � 1
2‖ · ‖

2)(x) := min
y∈Rn
{f(y) + 1

2γ ‖x− y‖
2}

• argmin of this is called proximal operator (more on this later)
• the Moreau envelope is a smooth under-estimator of f
• minimizers coincide (can minimize smooth envelope instead of f)
• example f(x) = |x|:

γ = 2
γ = 1, 2, 4
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Image of function under linear mapping

• the image function Lf : Rm → R ∪ {∞} is defined as

(Lf)(x) := inf
y
{f(y) : Ly = x}

where L : Rm → Rn is linear and f : Rm → R ∪ {∞}
• convex if f convex and bounded below for all x on inverse image
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Examples of image functions

• marginal function:

• let F : Rn × Rm → R ∪ {∞} be convex

• then (if f is bounded below) the marginal function

f : Rn → R ∪ {±∞} : x 7→ inf
y∈Rm

F (x, y)

is convex

• why? marginal function f = (LF ) where L(x, y) = x

(LF )(z) = inf
x,y
{F (x, y) | L(x, y) = z}

= inf
x,y
{F (x, y) | x = z}

= inf
y
{F (z, y)} = f(z)
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Infimal convolution

• also the infimal convolution is an image function

• infimal convolution of f1 and f2:

(f1 � f2)(z) = inf
x
{f1(x) + f2(z − x)}

• introduce g(x, y) = f1(x) + f2(y) and L(x, y) = x+ y, then

(Lg)(z) = inf
x,y
{g(x, y) : L(x, y) = z}

= inf
x,y
{f1(x) + f2(y) : x+ y = z}

= inf
x
{f1(x) + f2(z − x)} = (f1 � f2)(z)

• (therefore image function is not closed in general case)
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Supremum of convex functions

• point-wise supremum of convex functions from family {fj}j∈J :

f := sup{fj : j ∈ J}

• example: f1 = 1
2x

2 − 3x, f2 = x+ 2, f3 = 1
4x

2 + 2x

f3(x)

f2(x)

f1(x)

• convex since intersection of convex epigraphs!

39



Example – Conjugate functions

• the conjugate function f∗ is defined as

f∗(s) := sup
x∈Rn

{〈s, x〉 − f(x)}

• for each xj ∈ Rn, let rj = f(xj), then

f∗(s) := sup
xj

{〈s, xj〉 − rj}

• 〈s, xj〉 − rj convex (affine) in s (independent of convexity of f)

• supremum of family of affine functions ⇒ convex

• epigraph of conjugate is intersection of (closed) affine functions
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Draw the conjugate

• recall: f∗(s) := supx∈Rn {〈s, x〉 − f(x)}
• draw conjugate of f (f(x) =∞ outside points)

(−1, 0)
(0, 0.2)

(1, 0)

−s+ 0 s+ 0

0s− 0.2

• what if f(0) = −0.2 instead?

• what if f(0) = 0.2 and points are connected with straight lines?

• each feasible x defines a slope, f(x) defines vertical translation
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Support functions

• the support function to a set C is defined as

σC(s) := sup
x∈C
〈s, x〉

• it can be written as

σC(s) := sup
x
{〈s, x〉 − ιC(x)} =: ι∗C(x)

i.e., it is the conjugate of the indicator function

• (more on general conjugate functions later)
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Support function properties

• graphical interpretation (σC(s) = supx∈C〈s, x〉 = 〈s, x?〉 in
figure)

C

s

s

0

x?

〈s, x〉 = σC(s)

〈s, x〉 = r1

〈s, x〉 = r2

σC(s)

• put inequalities between r2, r1, and σC(s)

σC(s) ≤ r1 ≤ r2
• suppose that σC(s) = r, what is σC(2s)? 2r
• suppose that σC(s) = r, what is σC(−s)? don’t know!
• support function is positively homogeneous of degree 1, i.e.

σC(tx) = tσC(x) if t > 0
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Closure and convexity

• assume that C is nonempty

• then σC(s) = σcl C(s) = σconv C(s)

• example: the same if (closed) convex hull considered instead

0

s

〈s, x〉 = σC(s) = σconv C(s)

• therefore only necessary to consider closed and convex sets
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Further properties

• the support function is convex (since a conjugate function)

• functions that are convex and positively homogeneous of degree 1
are called sublinear
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1D example

• consider the set C = [0.2, 1]:

C

0.2 1

• draw the support function (σC(s) = supx∈C〈s, x〉)

s

σC x

0.2x

• the epigraph of this support function is a convex cone

• actually: f is sublinear if and only if epi f is a convex cone
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Directional derivative

• assume that f : Rn → R is finite-valued and convex

• the directional derivative of f at x in the direction d is

d 7→ f ′(x, d) := lim
t↓0

f(x+ td)− f(x)

t

• the directional derivative is convex in d for fixed x
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Positive homogeneity

• the directional derivative is positively homogeneous of degree 1

• proof: let

f ′(x, d1) = lim
t↓0

f(x+ td1)− f(x)

t

• set d2 = αd1 for some α > 0, then

f ′(x, d2) = lim
t↓0

f(x+ td2)− f(x)

t

= lim
t↓0

f(x+ tαd1)− f(x)

t

= lim
s↓0

f(x+ sd1)− f(x)

s/α

= αf ′(x, d1)
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Sublinearity

• f ′(x, d) is convex, positively homogeneous, hence sublinear (in d)

• it is also finite

• it is the support function for the subdifferential (next lecture)
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Example

• 1D example f(x) = 1
2x

2 + |x− 2|:

• compute f ′(2, 1) and f ′(2,−1):

f ′(2, 1) = lim
t↓0

0.5(2 + t)2 + |t| − 2

t
= lim

t↓0

2 + 3t+ t2 − 2

t
= 3

f ′(2,−1) = lim
t↓0

0.5(2− t)2 + | − t| − 2

t
= lim

t↓0

2− t+ t2 − 2

t
= −1
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Example cont’d

• use that f ′(2, d) positively homogeneous to get explicit expression

f ′(2, d) =

{
3d if d ≥ 0

1d if d ≤ 0

(since f ′(2,−1) = −1, then f ′(2,−2) = −2, etc)

• with origin shifted to point of interest (2, f(2)), we get

• tangent cone to epigraph of f is epigraph of directional derivative
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Example – Levelsets

• assume that f is convex with the following levelsets
(increasing values for larger sets)

x

• draw the set of directions d (from x) for with f ′(x, d) ≤ 0

x

• set of d for which f ′(x, d) ≤ 0 is tangent cone to levelset
(under some additional assumptions)
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