Convex Functions

Pontus Giselsson

Today's lecture

- lower semicontinuity, closure, convex hull
- convexity preserving operations
 - precomposition with affine mapping
 - infimal convolution
 - image function
 - supremum of convex functions (example: conjugate functions)
- support functions
- sublinearity
- directional derivative

Domain

- assume that $f \ : \ \mathcal{X} \to \mathbb{R}$ is finite-valued
- then $\mathcal{X}\subseteq \mathbb{R}^n$ is the domain of f

Extending the domain

- we want to avoid to explicitly state domain in $f~:~\mathcal{X} \to \mathbb{R}$
- extend domain of functions with $\mathcal{X} \neq \mathbb{R}^n$ by constructing:

$$\hat{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathcal{X} \\ \infty & \text{else} \end{cases}$$

(extension works well in convex analysis)

- obviously \hat{f} : $\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$
- define $\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\}$
- can compare function values on all of \mathbb{R}^n using $\overline{\mathbb{R}}$ arithmetics $(\infty = \infty \text{ and } c < \infty \text{ for all } c \in \mathbb{R})$

Standing assumptions

throughout this course we assume that all functions f:

- may be extended valued, i.e., have range $\overline{\mathbb{R}}$
- have extended domain, \mathbb{R}^n
- are proper, i.e., $f\not\equiv +\infty$
- are minorized by an affine function, i.e., there exist $s \in \mathbb{R}^n$ and $r \in \mathbb{R}$ such that $f(x) \ge \langle s, x \rangle + r$ for all x or

$$r \leq \inf_{x} \{f(x) - \langle s, x \rangle\}$$
 or $0 \leq \inf_{x} \{f(x) - \langle s, x \rangle - r\}$

example, affine minorizer:

Effective domain

- the effective domain of $f~:~\mathbb{R}^n\to\overline{\mathbb{R}}$ is the set

dom $f = \{x \in \mathbb{R}^n \mid f(x) < \infty\}$

Convex functions

• function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is *convex* if for all $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

(in extended valued arithmetics)

• "every convex combination of two points on the graph of f is above the graph"

a convex function

Comparison to other definition

• a function $f : \mathcal{X} \to \mathbb{R}$ (without extended domain) is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

holds for all $x,y\in\mathcal{X}$ and $\theta\in[0,1],$ and if \mathcal{X} is convex

- equivalent to definition for functions with extended domain
- for $f~:~\mathbb{R}^n\to\overline{\mathbb{R}},$ convexity of dom f is implicit in convexity definition

Why convexity?

- local minima are also global minima!
- $\bullet\,\Rightarrow\,{\rm can}$ search for local minima to minimize the function
- $\bullet \ \Rightarrow$ much easier to devise algorithms

Jensen's inequality

- assume that $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex
- then for all collections $\{x_1,\ldots,x_k\}$ of points

$$f\left(\sum_{i=1}^{k} \theta_i x_i\right) \le \sum_{i=1}^{k} \theta_i f(x_i)$$

where $\theta_i \ge 0$ and $\sum_{i=1}^k \theta_i = 1$

- for k=2 this reduces to the convexity definition

Strict and strong convexity

• a function is strictly convex if convex with strict inequality

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x \neq y$ and $\theta \in (0,1)$

• a function is $\sigma\text{-strongly convex}$ if there exists $\sigma>0$ such that

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\sigma}{2}\theta(1 - \theta)||x - y||^2$$

for every $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$

- strongly convex functions are strictly convex
- a function is σ -strongly convex iff $f \frac{\sigma}{2} \| \cdot \|^2$ is convex
 - prove by inserting $f \frac{\sigma}{2} \| \cdot \|^2$ in convexity definition
- a strongly convex function has at least curvature $\frac{\sigma}{2} \| \cdot \|^2$

Uniqueness of minimizers

- if a function is strictly (strongly) convex the minimizers are unique
- proof: assume that $x_1 \neq x_2$ and that both satisfy

$$x_2 = x_1 = \operatorname*{argmin}_x f(x)$$

i.e.,
$$f(x_1) = f(x_2) = \inf_x f(x)$$
, then

$$f(\frac{1}{2}x_1 + \frac{1}{2}x_2) < \frac{1}{2}(f(x_1) + f(x_2)) = \inf_x f(x)$$

contradiction!

• (minimizer might not exist for strictly convex, but always for strongly convex)

Smoothness

• a *convex* function is β -smooth if there exists $\beta > 0$ such that

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y) - \frac{\beta}{2}\theta(1 - \theta)||x - y||^2$$

for every $x,y\in\mathbb{R}^n$ and $\theta\in[0,1]$ (and convexity definition holds)

- · inequality flipped compared to strong convexity
- a convex function f is β -smooth iff $\frac{\beta}{2} \| \cdot \|^2 f$ is convex
- a smooth function is continuously differentiable
- (sometimes higher order differentiability required in smoothness definitions)

Graphs and epigraphs

- the graph of f is the set of all couples $(x,f(x))\in \mathbb{R}^n\times \overline{\mathbb{R}}$
- the epigraph of a (proper) function f is the nonempty set

$$\mathsf{epi}\ f = \{(x,r) \mid f(x) \le r\}$$

• (note dimension of epi f is n+1 when dimension of dom f is n)

Epigraphs and convexity

- let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$
- then f is convex if and only epi f is a convex set in $\mathbb{R}^n\times\mathbb{R}$

Level-sets

• a (sub)level-set $S_r(f)$ to the function f is defined as

$$S_r(f) = \{x \in \mathbb{R}^n \mid f(x) \le r\}$$

(slice epigraph and project back to \mathbb{R}^n))

- level-sets of convex functions are convex
- even if all level-sets convex, function might be nonconvex
- if all level-sets convex, function is quasi-convex

Level-sets and constraint qualification

- assume that $f : \mathbb{R}^n \to \mathbb{R}$ is convex (and finite-valued)
- Slater's constraint qualification assumes existence of $\bar{\boldsymbol{x}}$ such that

 $f(\bar{x}) < 0$

(0 is often used to define constraints, any level can be used)

- this clearly implies that the level-set $S_0(f)$ is nonempty
- in fact, it implies the following statements:
 - cl $\{x \mid f(x) < 0\} = \{x \mid f(x) \le 0\}$
 - $\{x \mid f(x) < 0\} = \inf \{x \mid f(x) \le 0\}$
 - consequently: bd $\{x \mid f(x) \le 0\} = \{x \mid f(x) = 0\}$

Affine functions

- affine functions $f(x) = \langle s, x \rangle b$
- for any $x_0 \in \mathbb{R}^n$ affine functions can be written as

$$f(x) = f(x_0) + \langle s, x - x_0 \rangle$$

(since $b = \langle s, x_0 \rangle - f(x_0)$)

• epigraph of affine function is closed half-space with non-horizontal normal vector $(s,-1)\in\mathbb{R}^n\times\mathbb{R}$

$$\begin{aligned} \operatorname{epi} &f = \{(x,r) : r \ge \langle s,x \rangle - b\} \\ &= \{(x,r) : b \ge \langle (s,-1), (x,r) \rangle \end{aligned}$$

Affine minorizers

- $\bullet\,$ any proper, convex f is minorized by some affine function
- more precisely: for any $x_0 \in \mathsf{ri} \mathsf{ dom } f$, there is s such that

$$f(x) \ge f(x_0) + \langle s, x - x_0 \rangle$$

which coincides with f at x_0

- i.e., there is an affine function whose epigraph covers epi \boldsymbol{f}
- convex epigraph supported by non-vertical hyperplanes

 $\bullet\,$ normal vector s is called subgradient, much more on this later

Lower semicontinuity

- a function $f~:~\mathbb{R}^n\to\overline{\mathbb{R}}$ is lower semicontinuous if $\lim\inf_{y\to x}f(y)\geq f(x)$
- consider the following function f which is not defined on x = 0:

• construct a lower semicontinuous function

$$g(x) = \begin{cases} f(x) & \text{if } x \neq 0 \\ c & \text{else} \end{cases}$$

what can $c\ {\rm be}?$ $% = 1000\ {\rm at}$ at or below lower circle

• (upper semicontinuous if inequality flipped)

Lower semicontinuity

The following are equivalent for $f : \mathbb{R}^n \to \overline{\mathbb{R}}$:

- *f* is *lower semicontinuous* (l.s.c.)
- epi f is a closed set
- all level-sets $S_r(f)$ are closed (may be empty)

will call lower semicontinuous functions closed

Closure (lower-semicontinuous hull)

• the closure cl f of the function f is defined as

 ${\rm epi}({\rm cl} f):={\rm cl}({\rm epi} f)$

- a function is closed iff cl f = f, i.e., if epi(f) := cl(epif)
- the closure is really the lower-semicontinuous hull:

cl $f = \sup\{h(x) \mid h \text{ lower-semicontinuous }, h \leq f\}$

• what is the closure of g_1 ?

Outer construction

• the closure of a *convex* function f is the supremum of all minorizing affine functions, i.e., cl f = g where

 $g(x) = \sup_{s,b} \left\{ \langle s, x \rangle - b \ : \ \langle s, y \rangle - b \le f(y) \text{ for all } y \in \mathbb{R}^n \right\}$

- let Σ_1 be all non-vertical hyperplanes that support epi f (solid)
- epi g is intersection of halfspaces defined by hyperplanes in $\boldsymbol{\Sigma}_1$
- let Σ_0 be all vertical hyperplanes that support epi f (dashed)
- cl(epif) is intersection of all halfspaces defined by Σ_1 and Σ_0 (consequence of strict separating hyperplane theorem)
- prove result by showing that halfspaces defined by Σ_0 redundant (i.e., dashed line not needed, then epi(clf) = cl(epif))

Continuity for convex functions

- for convex f, cl f(x)=f(x) for $x\in \operatorname{ri}\,\operatorname{dom}\,f$
- for finite-valued convex functions, ri dom $f = \mathbb{R}^n \Rightarrow \text{l.s.c.}$
- we can say more: convex f are locally Lipschitz continuous
- for each compact convex subset $S \subseteq \mathsf{ri} \text{ dom } f$ there exists L(S):

 $|f(x) - f(y)| \le L(S) ||x - y||$ for all x and y in S

• consequence: convex functions f are continuous on ri dom f

Why closed functions?

- a closed function defined on a nonempty closed and bounded set is bounded below and attains its infimum
- generalization of Weierstrass extreme value theorem

- left figure: closed, right figure: not closed
- (supremum not attained, needs upper semicontinuity)

Convex hull

• the convex hull is the largest convex minorizing function, i.e.:

$$\operatorname{conv} f(x) = \sup\{h(x) : h \operatorname{convex}, h \le f\}$$

• the closed convex hull:

$$\overline{\operatorname{conv}} f(x) = \sup\{h(x) : h \text{ closed convex }, h \le f\}$$

• the closed convex hull can equivalently be written as:

$$\overline{\operatorname{conv}}\ f(x) = \sup_{s,b}\{\langle s,x\rangle - b\ :\ \langle s,x\rangle - b \leq f(y) \text{ for all } y \in \mathbb{R}^n\}$$

(supremum of affine functions minorizing f)

Convex hull – Example

• the figure shows the closed convex hull

$$\overline{\mathsf{conv}}\ f(x) = \sup_{s,b}\{\langle s,x\rangle - b\ :\ \langle s,x\rangle - b \leq f(y) \text{ for all } y \in \mathbb{R}^n\}$$

of a nonconvex function

First-order conditions for convexity

- a differentiable function $f~:~\mathbb{R}^n \rightarrow \mathbb{R}$ is convex iff

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

• "function has affine minorizer defined by ∇f "

Second-order conditions for convexity

• a twice differentiable function is convex if and only if

 $\nabla^2 f(x) \succeq 0$

for all $x \in \mathbb{R}^n$ (i.e., the Hessian is positive semi-definite)

• "the function has non-negative curvature"

Examples of convex functions

• indicator function

$$\iota_{\mathcal{S}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{S} \\ \infty & \text{else} \end{cases}$$

[closed] and convex iff ${\mathcal S}$ [closed] and convex

- norms: ||x||
- norm-squared: $\|x\|^2$
- (shortest) distance to convex set: $dist_S(y) = inf_{x \in S} \{ ||x y|| \}$
- linear functions: $f(x) = \langle q, x \rangle$
- quadratic forms: $f(x)=\frac{1}{2}\langle Qx,x\rangle$ with Q positive semi-definite linear operator
- matrix fractional function: $f(x, Y) = x^T Y^{-1} x$

How to conclude convexity

different ways to conclude convexity

- use convexity definition
- show that epigraph is convex set
- use first or second order condition for convexity
- show that function built by convexity preserving operations (next)

Operations that preserve convexity

- assume that f_j are convex for $j = \{1, \ldots, m\}$
- assume that there exists x such that $f_j(x) < \infty$ for all j
- then positive combination

$$f = \sum_{j=1}^{m} t_j f_j$$

with $t_j > 0$ is convex

• "proof": add convexity definitions

 $t_j f_j(\theta x + (1 - \theta)y) \le t_j(\theta f_j(x) + (1 - \theta)f_j(y))$

Precomposition with affine mapping

• let f be convex and L be affine, then

$$(f\circ L)(x):=f(L(x))$$

is convex

• if $\operatorname{Im} L \cap \operatorname{dom} f \neq \emptyset$ then $f \circ L$ proper

Infimal convolution

- the infimal convolution of two functions $f,g\ {\rm is}\ {\rm defined}\ {\rm as}$

$$(f \Box g)(x) := \inf_{y \in \mathbb{R}^n} \{f(y) + g(x - y)\}$$

- convex if f and g are convex with a common affine minorizer
- closed and convex if f, g closed and convex and, e.g.:
 - $f(x) \rightarrow \infty$ as $\|x\| \rightarrow \infty$ (coercive) and g bounded from below
 - $f(x)/\|x\| \to \infty$ as $\|x\| \to \infty$ (super-coercive)
- in this case, infimal convolution is set addition of epi-graphs (in other case, strict epigraphs are equal)

Moreau envelope

- let $\gamma>0$ and f be closed and convex
- infimal convolution with $g = \frac{1}{2\gamma} \| \cdot \|^2$ is called *Moreau envelope*

$$(f \Box \frac{1}{2} \| \cdot \|^2)(x) := \min_{y \in \mathbb{R}^n} \{ f(y) + \frac{1}{2\gamma} \| x - y \|^2 \}$$

- argmin of this is called proximal operator (more on this later)
- the Moreau envelope is a smooth under-estimator of f
- minimizers coincide (can minimize smooth envelope instead of f)
- example f(x) = |x|:

Image of function under linear mapping

• the image function Lf : $\mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ is defined as

$$(Lf)(x) := \inf_{y} \{ f(y) : Ly = x \}$$

where $L : \mathbb{R}^m \to \mathbb{R}^n$ is linear and $f : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$

• convex if f convex and bounded below for all x on inverse image

Examples of image functions

- marginal function:
- let $F \ : \ \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ be convex
- then (if f is bounded below) the marginal function

$$f : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\} : x \mapsto \inf_{y \in \mathbb{R}^m} F(x, y)$$

is convex

• why? marginal function f=(LF) where $L(\boldsymbol{x},\boldsymbol{y})=\boldsymbol{x}$

$$(LF)(z) = \inf_{x,y} \{F(x,y) \mid L(x,y) = z\} = \inf_{x,y} \{F(x,y) \mid x = z\} = \inf_{y} \{F(z,y)\} = f(z)$$

Infimal convolution

- also the infimal convolution is an image function
- infimal convolution of f_1 and f_2 :

$$(f_1 \Box f_2)(z) = \inf_x \{f_1(x) + f_2(z-x)\}$$

• introduce $g(x,y) = f_1(x) + f_2(y)$ and L(x,y) = x + y, then

$$(Lg)(z) = \inf_{x,y} \{g(x,y) : L(x,y) = z\}$$

= $\inf_{x,y} \{f_1(x) + f_2(y) : x + y = z\}$
= $\inf_x \{f_1(x) + f_2(z - x)\} = (f_1 \Box f_2)(z)$

• (therefore image function is not closed in general case)

Supremum of convex functions

• point-wise supremum of convex functions from family $\{f_j\}_{j \in J}$:

$$f := \sup\{f_j : j \in J\}$$

• example: $f_1 = \frac{1}{2}x^2 - 3x$, $f_2 = x + 2$, $f_3 = \frac{1}{4}x^2 + 2x$

• convex since intersection of convex epigraphs!

Example – Conjugate functions

- the conjugate function f^{\ast} is defined as

$$f^*(s) := \sup_{x \in \mathbb{R}^n} \left\{ \langle s, x \rangle - f(x) \right\}$$

• for each $x_j \in \mathbb{R}^n$, let $r_j = f(x_j)$, then

$$f^*(s) := \sup_{x_j} \left\{ \langle s, x_j \rangle - r_j \right\}$$

- $\langle s, x_j \rangle r_j$ convex (affine) in s (independent of convexity of f)
- supremum of family of affine functions \Rightarrow convex
- epigraph of conjugate is intersection of (closed) affine functions

Draw the conjugate

- recall: $f^*(s) := \sup_{x \in \mathbb{R}^n} \{ \langle s, x \rangle f(x) \}$
- draw conjugate of $f(f(x) = \infty$ outside points)

- what if f(0) = -0.2 instead?
- what if f(0) = 0.2 and points are connected with straight lines?
- each feasible x defines a slope, f(x) defines vertical translation

Support functions

 $\bullet\,$ the support function to a set C is defined as

$$\sigma_C(s) := \sup_{x \in C} \langle s, x \rangle$$

• it can be written as

$$\sigma_C(s) := \sup_x \{ \langle s, x \rangle - \iota_C(x) \} =: \iota_C^*(x)$$

i.e., it is the conjugate of the indicator function

• (more on general conjugate functions later)

Support function properties

• graphical interpretation ($\sigma_C(s) = \sup_{x \in C} \langle s, x \rangle = \langle s, x^* \rangle$ in figure)

• put inequalities between r_2 , r_1 , and $\sigma_C(s)$

$$\sigma_C(s) \le r_1 \le r_2$$

- suppose that $\sigma_C(s) = r$, what is $\sigma_C(2s)$? 2r
- suppose that $\sigma_C(s) = r$, what is $\sigma_C(-s)$? don't know!
- support function is *positively homogeneous of degree 1*, i.e.

$$\sigma_C(tx) = t\sigma_C(x)$$
 if $t > 0$

Closure and convexity

- assume that C is nonempty
- then $\sigma_C(s)=\sigma_{\mathsf{CI}\ C}(s)=\sigma_{\overline{\mathsf{CONV}}\ C}(s)$
- example: the same if (closed) convex hull considered instead

• therefore only necessary to consider closed and convex sets

Further properties

- the support function is convex (since a conjugate function)
- functions that are convex and positively homogeneous of degree 1 are called *sublinear*

1D example

• consider the set C = [0.2, 1]:

$$0.2$$
 1 \sim C

• draw the support function $(\sigma_C(s) = \sup_{x \in C} \langle s, x \rangle)$

- the epigraph of this support function is a convex cone
- actually: f is sublinear if and only if epi f is a convex cone

Directional derivative

- assume that $f~:~\mathbb{R}^n \to \mathbb{R}$ is finite-valued and convex
- \bullet the directional derivative of f at x in the direction d is

$$d \mapsto f'(x,d) := \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$

 $\bullet\,$ the directional derivative is convex in d for fixed x

Positive homogeneity

- the directional derivative is positively homogeneous of degree 1
- proof: let

$$f'(x, d_1) = \lim_{t \downarrow 0} \frac{f(x + td_1) - f(x)}{t}$$

• set $d_2 = \alpha d_1$ for some $\alpha > 0$, then

$$f'(x, d_2) = \lim_{t \downarrow 0} \frac{f(x + td_2) - f(x)}{t}$$
$$= \lim_{t \downarrow 0} \frac{f(x + t\alpha d_1) - f(x)}{t}$$
$$= \lim_{s \downarrow 0} \frac{f(x + sd_1) - f(x)}{s/\alpha}$$
$$= \alpha f'(x, d_1)$$

Sublinearity

- $f^\prime(x,d)$ is convex, positively homogeneous, hence sublinear (in d)
- it is also finite
- it is the support function for the subdifferential (next lecture)

Example

• 1D example $f(x) = \frac{1}{2}x^2 + |x - 2|$:

• compute $f^\prime(2,1)$ and $f^\prime(2,-1)$:

$$f'(2,1) = \lim_{t \downarrow 0} \frac{0.5(2+t)^2 + |t| - 2}{t} = \lim_{t \downarrow 0} \frac{2+3t+t^2-2}{t} = 3$$
$$f'(2,-1) = \lim_{t \downarrow 0} \frac{0.5(2-t)^2 + |-t| - 2}{t} = \lim_{t \downarrow 0} \frac{2-t+t^2-2}{t} = -1$$

Example cont'd

- use that $f^\prime(2,d)$ positively homogeneous to get explicit expression

$$f'(2,d) = \begin{cases} 3d & \text{if } d \ge 0\\ 1d & \text{if } d \le 0 \end{cases}$$

(since f'(2,-1) = -1, then f'(2,-2) = -2, etc)

• with origin shifted to point of interest (2, f(2)), we get

• tangent cone to epigraph of f is epigraph of directional derivative

Example – Levelsets

• assume that f is convex with the following levelsets (increasing values for larger sets)

• draw the set of directions d (from x) for with $f'(x, d) \leq 0$

• set of d for which $f'(x, d) \le 0$ is tangent cone to levelset (under some additional assumptions)