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Today’s lecture

lower semicontinuity, closure, convex hull

convexity preserving operations

precomposition with affine mapping

infimal convolution

image function

supremum of convex functions (example: conjugate functions)

support functions
sublinearity
directional derivative



Domain

e assume that f : X — R is finite-valued
e then X C R" is the domain of f



Extending the domain

we want to avoid to explicitly state domainin f : X - R

extend domain of functions with X # R"™ by constructing:

. flz) ifzeX
)= { o

00 else
(extension works well in convex analysis)
obviously f : R™ — RU {400}
define R := RU {+oco}

can compare function values on all of R” using R arithmetics
(00 = 00 and ¢ < oo for all ¢ € R)



Standing assumptions

throughout this course we assume that all functions f:

e may be extended valued, i.e., have range R
e have extended domain, R"
e are propet, i.e., f # +o0

e are minorized by an affine function, i.e., there exist s € R™ and
r € R such that f(z) > (s,z) 4+ r for all z or

rgigf{f(x)—@m)} or Ogir;f{f(x)—@,x)—r}

example, affine minorizer:

f(@)

(s,z) +r

NAE



Effective domain

e the effective domain of f : R™ — R is the set

dom f={z eR" | f(z) < oo}



Convex functions

e function f : R™ — R is convex if for all x,y € R™ and 0 € [0, 1]:

[0z +(1=0)y) <0f(x)+ (1 -0)f(y)

(in extended valued arithmetics)

e ‘“every convex combination of two points on the graph of f is
above the graph”

a nonconvex function a convex function



Comparison to other definition

e a function f : X — R (without extended domain) is convex if

fO0z+(1=0)y) <0f(x)+(1-0)f(y)

holds for all z,y € X and 8 € [0, 1], and if X is convex
e equivalent to definition for functions with extended domain
e for f : R™ — R, convexity of dom f is implicit in convexity
definition



Why convexity?

o local minima are also global minimal
e = can search for local minima to minimize the function

e = much easier to devise algorithms



Jensen’s inequality

e assume that f : R™ — R is convex

e then for all collections {x1,...,x} of points
k k
i=1 i=1

where 6; > 0 and Y0 6, = 1

o for k = 2 this reduces to the convexity definition
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Strict and strong convexity

a function is strictly convex if convex with strict inequality

[0z 4+ (1=0)y) <O0f(x) + (1 -0)f(y)

forall z #£ y and 6 € (0,1)
a function is o-strongly convex if there exists o > 0 such that

f0x + (1= 0)y) <Of(2) + (1= 0)f(y) — 501 = 0)|lz —y]”

for every z,y € R™ and 0 € [0,1]

strongly convex functions are strictly convex

a function is o-strongly convex iff f — || - || is convex
e prove by inserting f — Z| - |> in convexity definition

a strongly convex function has at least curvature || - |2
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Uniqueness of minimizers

e if a function is strictly (strongly) convex the minimizers are unique
e proof: assume that x; # z2 and that both satisfy

xo = x1 = argmin f(x)
x

i.e., f(z1) = f(z2) = inf, f(z), then

f(%zl + %$2) < %(f(zl) + f(x2)) = igf f(z)

contradiction!

e (minimizer might not exist for strictly convex, but always for
strongly convex)
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Smoothness

a convex function is B-smooth if there exists 5 > 0 such that
F(Oz + (1= 0)y) > 0f(2) + (1= 0)f(y) = 501 = O) ]z — g

for every z,y € R™ and 0 € [0, 1] (and convexity definition holds)
inequality flipped compared to strong convexity
[

a convex function f is S-smooth iff g” -||# = f is convex

a smooth function is continuously differentiable

(sometimes higher order differentiability required in smoothness
definitions)
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Graphs and epigraphs

e the graph of f is the set of all couples (z, f(z)) € R* x R
e the epigraph of a (proper) function f is the nonempty set

epi f={(z,r) | f(z) <7}

e (note dimension of epi f is n + 1 when dimension of dom f is n)

epif
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Epigraphs and convexity

eletf: R" =R

e then f is convex if and only epi f is a convex set in R” x R

epif epif

nonconvex convex
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Level-sets

e a (sub)level-set S,.(f) to the function f is defined as

Se(f)={z eR"| f(zx) <r}

<

(slice epigraph and project back to R™))
e |evel-sets of convex functions are convex
e even if all level-sets convex, function might be nonconvex

o if all level-sets convex, function is quasi-convex
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Level-sets and constraint qualification

assume that f : R™ — R is convex (and finite-valued)

Slater’s constraint qualification assumes existence of Z such that

f@) <0

(0 is often used to define constraints, any level can be used)
this clearly implies that the level-set So(f) is nonempty
in fact, it implies the following statements:
o cd{z| f(z) <0} ={z | f(x) <0}
o {z| f(x) <0} =int{z | f(z }SO

) <0}
o consequently: bd {z | f(z) <0} ={z | f(z) =0}
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Affine functions

e affine functions f(z) = (s,z) — b
o for any zy € R™ affine functions can be written as
f(@) = f(zo) + (s,2 — o)

(since b = (s, 20) — f(w0))
e epigraph of affine function is closed half-space with
non-horizontal normal vector (s,—1) € R® x R
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Affine minorizers

e any proper, convex f is minorized by some affine function
e more precisely: for any zy € ri dom f, there is s such that

f(x) = f(xo) + (s,2 — x0)
which coincides with f at xg
i.e., there is an affine function whose epigraph covers epi f
convex epigraph supported by non-vertical hyperplanes

e normal vector s is called subgradient, much more on this later
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Lower semicontinuity

a function f : R™ — R is lower semicontinuous if
lim inf f(y) > /()
y—x

consider the following function f which is not defined on z = 0:

/

construct a lower semicontinuous function
flz) ifz#0
g(z) = {
c else

what can ¢ be? at or below lower circle
(upper semicontinuous if inequality flipped)
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Lower semicontinuity

The following are equivalent for f : R* — R:

e f is lower semicontinuous (l.s.c.)
e epi f is a closed set

o all level-sets S,.(f) are closed (may be empty)

will call lower semicontinuous functions closed

l.s.c. not l.s.c.

21



Closure (lower-semicontinuous hull)

the closure cl f of the function f is defined as

epi(clf) := cl(epif)

a function is closed iff cl f = f, i.e., if epi(f) := cl(epif)
the closure is really the lower-semicontinuous hull:

cl f =sup{h(z) | h lower-semicontinuous ,h < f}

what is the closure of g7

o

g1 cl g1



Outer construction

the closure of a convex function f is the supremum of all
minorizing affine functions, i.e., cl f = g where

g(x) = su£{<s,;l:> —b : (s,y) —b< f(y) forall y e R"}

let 31 be all non-vertical hyperplanes that support epi f (solid)
epi g is intersection of halfspaces defined by hyperplanes in ¥y
let X be all vertical hyperplanes that support epi f (dashed)
cl(epif) is intersection of all halfspaces defined by ¥; and %
(consequence of strict separating hyperplane theorem)

prove result by showing that halfspaces defined by ¥y redundant
(i.e., dashed line not needed, then epi(clf) = cl(epif))
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Continuity for convex functions

for convex f, cl f(z) = f(x) for x € ri dom f
for finite-valued convex functions, ri dom f =R"” = l.s.c.
we can say more: convex f are locally Lipschitz continuous

for each compact convex subset S C ri dom f there exists L(S):
|f(z) = f(y)| < L(S)||x —y|| forall zand yin S

consequence: convex functions f are continuous on ri dom f
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Why closed functions?

o a closed function defined on a nonempty closed and bounded set
is bounded below and attains its infimum

e generalization of Weierstrass extreme value theorem

o— o — o

— T

inf attained inf not attained

o left figure: closed, right figure: not closed

e (supremum not attained, needs upper semicontinuity)
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Convex hull

e the convex hull is the largest convex minorizing function, i.e.:
conv f(x) =sup{h(z) : h convex ,h < f}
e the closed convex hull:
conv f(z) =sup{h(z) : h closed convex ,h < f}
o the closed convex hull can equivalently be written as:

conv f(x) =sup{(s,z) —b : (s,z) —b < f(y) for all y e R"}
s,b

(supremum of affine functions minorizing f)
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Convex hull — Example

o the figure shows the closed convex hull

conv f(x) =sup{(s,z) = b : (s,z) —b < f(y) for all y e R"}

s,b

of a nonconvex function

x f(1)
O conv f(1)
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First-order conditions for convexity

e a differentiable function f : R™ — R is convex iff

fy) = f(@) +(Vf(z),y —x)

holds for all z,y € R™

e “function has affine minorizer defined by V f"
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Second-order conditions for convexity

e a twice differentiable function is convex if and only if
V2f(z) =0

for all z € R™ (i.e., the Hessian is positive semi-definite)

e “the function has non-negative curvature”
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Examples of convex functions

indicator function

LS(I)_{O ifeesS

oo else

[closed] and convex iff S [closed] and convex

norms: ||z||

norm-squared: ||z||?

(shortest) distance to convex set: distg(y) = inf es{||x — y||}
linear functions: f(z) = (g, x)

quadratic forms: f(z) = %(Qz,@ with @ positive semi-definite
linear operator

matrix fractional function: f(z,Y) =2TY 1z
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How to conclude convexity

different ways to conclude convexity

e use convexity definition
e show that epigraph is convex set
e use first or second order condition for convexity

e show that function built by convexity preserving operations (next)
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Operations that preserve convexity

assume that f; are convex for j = {1,...,m}
assume that there exists = such that f;(z) < oo for all j
then positive combination

f=Y tf;
j=1

with t; > 0 is convex

“proof”: add convexity definitions

tjfi(0z + (1 = 0)y) < ;(0f;(x) + (1 - 0)f;(y))
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Precomposition with affine mapping

o let f be convex and L be affine, then

(f o L)(x) := f(L())

is convex
e if ImL Ndomf # () then f o L proper
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Infimal convolution

the infimal convolution of two functions f, g is defined as
(fOg)(x) = yienﬂgn{f(y) +9(z—y)}

convex if f and g are convex with a common affine minorizer
closed and convex if f, g closed and convex and, e.g.:
o f(z) = oo as ||z|| = oo (coercive) and g bounded from below
o f(z)/||z|| = oo as ||z|]]| = oo (super-coercive)

in this case, infimal convolution is set addition of epi-graphs
(in other case, strict epigraphs are equal)
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Moreau envelope

let v > 0 and f be closed and convex
infimal convolution with g = %H - |I? is called Moreau envelope

(f O3l I")(@) = min{f(y) + 3 = — ylI*}

yERn

argmin of this is called proximal operator (more on this later)
the Moreau envelope is a smooth under-estimator of f
minimizers coincide (can minimize smooth envelope instead of f)
example f(z) = |z|:

v =1,2,4
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Image of function under linear mapping

e the image function Lf : R™ — R U {oo} is defined as
(Lf)(z) = nf{f(y) : Ly =z}

where L : R™ — R™ is linear and f : R™ — RU {o0}

e convex if f convex and bounded below for all = on inverse image
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Examples of image functions

marginal function:
let F' : R" x R™ — RU {oo} be convex
then (if f is bounded below) the marginal function

f i R" 5 RU{+o0} : z+— inf F(z,y)
yeR™
is convex
why? marginal function f = (LF) where L(z,y) = x
(LF)(2) = inf{F(2,y) | L(z,y) = 2}
=inf{F(x,y) | x = z}
= inf(P(z, )} = 1(2)
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Infimal convolution

also the infimal convolution is an image function

infimal convolution of f, and fo:
(f1 O f2)(z) = mf{f1(z) + f2(z — )}
introduce g(z,y) = fi(#) + fa(y) and L(z,y) = = + y, then
(Lg)(z) = inf{g(z,y) : L(z,y) = 2}
=inf{fi(@) + foly) + 2 +y =2}

= irwlf{f1($) + fo(z —2)} = (f1 O f2)(2)

(therefore image function is not closed in general case)
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Supremum of convex functions

e point-wise supremum of convex functions from family {f;},ec:
f=sup{f; : je€J}

o example: fi =322 -3z, fo=x+2, f3=J22+2

f3(z)

~— fa(x)

fi(z)

e convex since intersection of convex epigraphs!
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Example — Conjugate functions

the conjugate function f* is defined as

f(s) == sup {(s,2) — f(2)}

zER™

for each z; € R™, let ; = f(x;), then

f*(s) 7= sup {(s,x;) — r;}
(s,xj) —r; convex (affine) in s (independent of convexity of f)
supremum of family of affine functions = convex

epigraph of conjugate is intersection of (closed) affine functions
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Draw the conjugate

o recall: f*(s) := sup,epn {(s,2) — f(2)}
e draw conjugate of f (f(z) = oo outside points)

—s+0 s+ 0

(0,0.2)
(=1,0) (1,0) 0502

e what if f(0) = —0.2 instead?
e what if f(0) = 0.2 and points are connected with straight lines?
e ecach feasible = defines a slope, f(x) defines vertical translation



Support functions

o the support function to a set C' is defined as

oc(s) == sgg(s, x)
x

e it can be written as
oc(s) :=sup{(s,z) —tc(z)} =: 15 (x)
x

i.e., it is the conjugate of the indicator function

e (more on general conjugate functions later)

42



Support function properties

e graphical interpretation (0¢(s) = sup,cc (s, z) = (s,2*) in
figure)

0
e put inequalities between 7o, r1, and o¢(s)

oc(s) <ri <y

suppose that oc(s) = r, what is 0¢(2s)? 2r
suppose that o¢(s) = r, what is o¢(—s)? don't know!
support function is positively homogeneous of degree 1, i.e.

Uc(t$) = tO’c(.fC) ift>0
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Closure and convexity

e assume that C' is nonempty
o then oc(s) = o¢| (s) = ogonv c(s)
e example: the same if (closed) convex hull considered instead

S

(s,2) = 0c(s) = oconv c(s)

0

o therefore only necessary to consider closed and convex sets
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Further properties

e the support function is convex (since a conjugate function)

o functions that are convex and positively homogeneous of degree 1
are called sublinear
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1D example

consider the set C' = [0.2, 1]:

draw the support function (oc(s) = sup,eq (s, x))

oc T

0.2z

the epigraph of this support function is a convex cone

actually: f is sublinear if and only if epi f is a convex cone
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Directional derivative

e assume that f : R™ — R is finite-valued and convex

o the directional derivative of f at x in the direction d is

e the directional derivative is convex in d for fixed x
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Positive homogeneity

o the directional derivative is positively homogeneous of degree 1

e proof: let

di) —

e set dy = ad;y for some v > 0, then

f(z,do) = 13&1 flz+ tdj) — f(@)
et tady) — (@)
Y t
o St sd) — J(@)
510 s/a

= af'(z,dy)
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Sublinearity

e f'(xz,d) is convex, positively homogeneous, hence sublinear (in d)
e it is also finite

e it is the support function for the subdifferential (next lecture)
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Example

e 1D example f(z) = 22% + |z — 2|:

e compute f'(2,1) and f'(2,—1):

052+t)*+[t|—2 ,m2+3t+t2—2 B

/ 1
Fen= ltlil(r)l t ltlw t ’
B2 —t)2+]—t] -2 2—t4+12—2
f’(2,—1):hm05( D7Hl=tl=2 2tk =2
tl0 t tl0 t
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Example cont’d

e use that f/(2,d) positively homogeneous to get explicit expression

3d ifd>0

f'2.d) = {1d if d <0

(since f/(2,—1) = —1, then f/(2,—2) = —2, etc)
e with origin shifted to point of interest (2, f(2)), we get

e tangent cone to epigraph of f is epigraph of directional derivative
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Example — Levelsets

e assume that f is convex with the following levelsets
(increasing values for larger sets)

< >

o draw the set of directions d (from z) for with f'(z,d) <0

N

-~

e set of d for which f/(z,d) < 0 is tangent cone to levelset
(under some additional assumptions)
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