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Today’s lecture

conjugates and biconjugates
Fenchel’s inequality
Fenchel-Young's equality
conjugation and optimization
subdifferentials using the conjugate

conjugates of

e image functions
e functions precomposed with linear mappings

subdifferential calculus rules



Conjugate functions

e standing assumption:

we assume that f is proper and has an affine minorizer

e the conjugate function is defined as

f*(s) ésgp{(&@ — f(x)}



Graphical interpretation

* consider f*(s) =sup {{s,x) — f(x)} = —inf {f(2) — (s, 2)}

e “(-) smallest value of f when tilted by (s, x)

e example: f*(3)
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Conjugate properties

recall from lecture on convex functions:

e the conjugate is convex, since supremum of affine functions

e it is closed since epigraph intersection of closed half-spaces



Further properties

e assume affine minorizer to f(x) on form (sg,z) — b

e the conjugate function f* # oo:
f"(s0) = sup{{so, ) — f(x)} < sup{(so,x) — (s0, ) + b} <b
e the conjugate f*(s) > —oo for all s and has affine minorizer:

() =sup{(s, 2) — f(2)} = (5, 7) = f(7)

where Z is a points with f(Z) < oo (exists by assumption)
(use same Z for all s to get affine minorizer)

e conjugate satisfies assumptions for taking conjugate!



Biconjugate

o the biconjugate f** is obtained by conjugating twice, i.e.
7 ) = ()" (2)

e biconjugate can be written as

£ (@) = sup {Ga.) — £(5))
= sup {{.5) —sup ((5.2) - 52} }
—sup { (o) 7 [ r=sup {(5.2) - (2}
—sup{(a.) 2w {(s13) — S}

s,r

= sgg{(m,s) —r|r>{(sz)— f(z) for all 2z}

=sup{(s,z) —r | (s,2) —r < f(z) for all z}

s,r

e do you recall this expression?



Graphical interpretation

® expression:
7 (@) =sup{{y, ) —r | (y,2) —r < f(2) for all z}
Y,

“search for affine minorizers to f with largest value at ="

e biconjugate is closed convex hull
° f** S f

o f=f" < clconvf = f < f proper closed convex



Fenchel’s inequality

o from definition of conjugate function
[ (s) = sup{(s,z) — f(z)}
we get for any z,s € R"

[ () + f(x) = (s,x) or  f(z)=(s,2) = ["(s)

LsT — 1 (s)

o affine function = — (s, z) — f*(s) minorizes f(x)




Fenchel-Young's equality

e how do x and s relate when we have equality in

f(@) = (s,2) = f7(s)

i.e., when

sz — fr(shr (s,—1)

e we have equality iff (s,—1) € Nepi f(m,f(x)) ors e df(x)
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Proof

[f(@) = (s,2) = F*(s) & s € 0f(w) |

o s c Of(x) iff (defintion of subgradient)

f(y) = f(x) + (s,y —x) for all y

& (s;y) = f(y) < (s,2) — f(x) forall y
& St;p{<8,y> —fy)} < (s,2) — f(=)
& f(s) < (s,2) = f(x)

o Fenchel’s inequality always holds:

[r(s) = (s,2) = f(x)

inequality reversed = equality holds
e simple yet powerful result!
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Consequence of Fenchel-Young

for general f we have ‘ s€df(x) = x € df*(s) ‘

e proof: since s € Of(x), Fenchel-Young and f > f** gives

0= f"(s) + f(x) = (s,2) > f*(s) + [ (x) = (s, )
e Fenchel's inequality says that other direction holds:
0< f(s)+ f7(2) = (s,2)
i.e., this implies equality,
0=f"(s)+ (f)"(z) = (s5,2)

which is equivalent to x € df*(s)

12



Consequence of Fenchel-Young

for general f we have’x € 0f*(x) = s € df**(s) ‘

e apply z € dg(s) = s € dg*(z) to g(s) = f*(s):

vedyg(s)=0f"(s) =  sedg(x)=0f"()
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Consequence of Fenchel-Young

proper closed convex f:

e we have
f@)+f*(s) = (s,2) =0 s€df(z) & xe€df(s)

e proof:

o First equivalence: Fenchel-Young's equality
e Second equivalence =: as above
e Second equivalence <: follows from f** = f:

x €0f(s) = se€df " (x) =0f(x)
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Conjugation and optimization

e we have
inf f(x) = —sup{{0,z) — ()} = =1 (0)
e Fermat's rule says:
2 minimizes f(x) =3 0€df(x)
e can you characterize Argmin, f(x) if f proper closed convex?

Arggnin f(z) =0f*(0)

(since z € 0f*(0) < 0 € 9f(x))
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Subdifferential of conjugate

e the subdifferential to the conjugate function satisfies
9f"(s) 2 Argmax{(s, z) — f(x)}
proof:
x* € Argmax{(s,z) — f(z)} & 2* € Argmin{f(z) — (s,2)}

& 0e0(f(e") — (s,27))
(assume) < 0 € Of (x*) — s

& sedf(zx”)

=a* € df*(s)

e if in addition f is closed convex, then

0f (s) = Argmax{(s, z) — f(x)}

proof: last implication is equivalence in above proof
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Proof of assumption

e for any proper f, we have O(f(z) — (s,x)) = 0f(x) — s
o ued(f(x)— (s,x)) iff

f(y) = (s,9) = f(2) = (s,2) + (w,y — x)
& fy) = f@) + (ut s,y —x)

e, iffu+sedf(z)ord(f(z)—(s,z))+s=0f(x)

e example:
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Subdifferential of function

o from previous slide: if f is closed convex, then
01" (s) = Argmax{(s.) — f(z)}
e apply to f* (since closed convex):
Of (x) = Argmax{(z, s) — [*(s)}
o if f closed convex, then f = f** and

01(z) = Avgmax{(z,5) - ()}
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Relation between subdifferentials

e we know that for proper closed convex f
sedf(x) < xe€df(s)

e J0f and Of* are each others images under mapping (z, s) — (s, x)
e example: f(x) = |z|, draw O f*
x

V)

s € 90f(x)

x € df*(s)

19



Conjugate of image function and precomposition

e next we will compute the conjugates of image functions (Lg):

(Lg)(z) = inf g(y)

e and the functions with precomposition (g o L):

(9o L)(x) = g(Lx)
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Conjugate of image function

let g be proper with affine minorizer and L be a linear mapping
assume:

ImZL Ndomg # ()
then Lg is proper and has an affine minorizer and its conjugate is
(Lg)" =g oL"

proof: (first show that Lg is proper and has affine minorizer)

(£)"(s) =sup { s.2) ~ jnf glo)}

= o {(s,2) —g(y)}
= Sl;p {(s, Ly) — g(y)}
— sgp{(L*Syw -9y}

=g (L7s) = (9" o L7)(s)
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Conjugate of precomposition function

let g be proper closed convex and L be a linear operator
assume:

ImL Nri domg # ()
then (g o L)* = L*¢* and for every s € dom(g o L)*,
(9o L)"(s) = L7g"(s) = min{g™(p) | L'p = s}

i.e., the minimum is attained
proof: apply previous result:

(L*¢*)* = g™ o L* = go L
taking again the conjugate:

(9oL)" = (L'g")" = L'y’

where the last equality holds if (L*g*) is proper closed convex

proper and convex shown before, closedness can be shown if
ImZL Nri domg #
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Key result 1

o let's summarize the results from the previous slides:

Assume that g is proper closed and convex, that L is a linear
operator, and that ImL N ri domg # () then for s € dom (g o L)*:

(goL)*(s) = (L7g")(s) = min{g"(p) | L"p = s}
i.e., the the conjugate of the precomposition function g o L is the

image function (L*g*), and the minimum in the image function
definition is attained.

e this result will be the main result from which we can:

e prove subdifferential calculus rules
e derive strong duality
e show necessary and sufficient optimality conditions
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Key result 2

e let f, g be proper closed convex and L be linear and assume
ri domgNri L(domf)#0 <=  ridom(goL)Nridom f # 0
e then

min {f(s = L) + 9" ()} = (f + g0 L)"(s)

e (note that minimum attained)
e (actually a Corollary of Key result 1)
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Proof sketch of “Key result 2”

e |et

o then: (f+golL)*=(hoK)*
e properties of h and K: assumption that

ri dom fNridom (go L) #0

Jz|z € ri dom fNridom (go L)
Jz|(z,x) € ri dom f x ri dom (go L)
Jz|(z, Lz) € ri dom f x ri dom ¢
Jz|(z, Lz) € ri (dom f x dom g)

Im K Nridomh#0

Freny

e = can apply “Key result 1"!
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Proof continued

e to use “Key result” ((ho K)*(s) = (K*h*)(s)) compute K*, h*:
e adjoint K* to Kz = (z, Lx) is given by:

(Kz,(y,2)) = (z,y) + (Lz, 2) = (z,y) + (z, L72)
= (r,y+ L7z) = (, K*(y, 2))

ie., K*(y,2) =y+ L*z and
e conjugate h* is given by:
R (A 1) = Sup {{A ), (@) — f(2) —g(y)}
= sup {N2) + (py) — @) —g(y)}

= sup {Ax) = f(2)} + sup {{sy) —9(y)}

=N +g ()
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Proof continued

e apply “Key result 1":
(f +9g0L)"(s) = (ho K)"(s)
= (K"h*)(s)
= K*?&lf,%:sh (A, )
= min {f*(A) +¢7 () : A+ L7 = s}

= IrLin{f*(S —Lp) +g" (1)}

e where we get existence of 11 and A due to “Key result 1"
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Notes on Key results

o Key result 2 is Corollary of Key result 1
o Key result 1 and 2 will be used to show when

O(f+goL)=0f+L"0dgoL

(which will be used to show optimality conditions)

o Key result 2 will also be used to show when strong duality holds
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Subdifferential sum

o for differentiable f and g, the chain-rule gives
V(f+goL)=Vf+L"oVgolL
o for subdifferentiable functions f and g, when do we have

Of+goLl)=0f+L"0dgo L?
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Subdifferential sum

e we start with the case where L = Id

e assume that f, g are proper closed and convex and that
ri domg Nri domf # ()
then
O(f +9)(x) = 0f(x) + 0g(x)

for every x € dom (f + g) = dom fNdom g
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Proof of subdifferential sum <

e assume that s; € 9f(x) and s3 € dg(x)
e add definitions of subdifferential operator

Fy) +9(y) > f(x) + g(x) + (51 + 52,y — 2)
= (f+9)) > (f+9)(x) + (s1+ 82,y — )

e therefore s1 + s2 € (f + g)(x)
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Proof of subdifferential sum =

assume that s € 9(f + g)(x)
Fenchel-Young's equality gives

(f+9)7(s) + (f +9)(x) — (s,2) =0
since s € dom(f + g)* we apply “Key result 2", i.e., there Ju:

(s =)+ g7 () + fx) + g(x) = (s,2) =0 (1)

by Fenchel-Young's inequality, we have

fi(s =)+ fz) = (s —p,2) <0
9" (1) +9(x) = (p,x) <0
by (1), these must be equalities, i.e.:
s—p€of(x) p € dg(z)

and

s=(s—p)+pedf(r)+dg(z)
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Example — First-order optimality condition

assume that ri dom fNri C # ()
an x optimizes inf cc f(x) iff there exists s € f(x) such that

(s,y—z)>0foralyeC

and z € C
proof: O(f + tc)(x) = 0f(x) + Ne(x)
optimality condition: 0 € 9f(x) + Ne(x) or for any 5 € df(z):

—5€ Ne(z)={s| (s,y—z) <0Oforall y e C}

for z € C (otherwise N¢(x) is empty)
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Graphical interpretation

e first-order optimality condition: there exists 5 € df(x) such that

—s5€ N¢g(z)={s| (s,y —z) <0forally e C}
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Precomposition

e next, we cover the pure composition case

e assume that f is proper closed and convex and that
Im LNri dom g # 0 — ri dom (go L) # 0
then
d(go L)(x) = L* o 9g(Lx)

for every Lz € dom g
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Precomposition proof <

e assume that p € dg(Lx) with Lz € dom g
o subdifferential definition with z = Ly:

9(2) = g(Lx) + (p, z — La)
= 9(Ly) = g(Lx) + (p, Ly — Lx)
= (9o L)(y) =z (9o L)(z) + (Lp,y

thatis, L*p € d(g o L)(x) or L*0g(Lxz) C d(go L)(x)

— z)
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Precomposition proof =

assume that s € d(g o L)(x), i.e., that

(goL)*(s) + (go L)(x) = (s,2) = 0 )

assumptions imply “Key result 1" can be used:
(9o L)*(s) = (L7g")(s) = min{g"(p) | L'p = s} = g"(p)

where L*p = s

therefore (2) becomes
0=9"(p) +9(Lx) = (L'p,2) = g"(p) + g(Lx) — (p, L)

which implies p € dg(Lx), s € L*0g(Lx), and
d(go L)(x) C L*dg(Lx)
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Sum and composition

adding the two previous results on f and h = g o L, we get:
(f +h)(x) =0f(x) +0(go L)(x) = 0f (x) + L*0g(Lx) (3)

provided that assumptions hold

we assume:
ri domgNri L(domf)#0 <=  ridom(goL)Nridom f #

since ri dom (go L) = ri dom h # (), composition and sum OK!

(will use (3) to derive optimality conditions)
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Image function

e suppose that f is proper closed and convex

e suppose that € dom(Lg) = L(domg) and that there exists 3
with Ly = = and g(g) = (Lg)(z), which holds e.g., if

ImL* N ri dom g* # ()
e then

d(Lg)(x) = {s | L"s € 0g(y)}
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Proof

recall 3y with Ly = x and ¢(7) = (Lg)(x)
that s € 9(Lg)(x) is, by Fenchel-Young, equivalent to that

(Lg)*(s) + (Lg)(z) — (s,2) =0
(Lg)*(s) +g(7) — (s, Ly) =0

since (Lg)* = g* o L*, ie., (Lg)*(s) = g*(L*s) we have
g (L7s) +g(7) — (L"s,9) =0

or equivalently L*s € dg(y), i.e. d(Lg) = {s| L*s € dg(9)}
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