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Today’s lecture

• conjugates and biconjugates

• Fenchel’s inequality

• Fenchel-Young’s equality

• conjugation and optimization

• subdifferentials using the conjugate

• conjugates of
• image functions
• functions precomposed with linear mappings

• subdifferential calculus rules
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Conjugate functions

• standing assumption:

we assume that f is proper and has an affine minorizer

• the conjugate function is defined as

f∗(s) , sup
x
{〈s, x〉 − f(x)}
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Graphical interpretation

• consider f∗(s) = sup
x
{〈s, x〉 − f(x)} = − inf

x
{f(x)− 〈s, x〉}

• “(-) smallest value of f when tilted by 〈s, x〉”
• example: f∗( 1

2 )

−f∗( 1
2 )

interpretation 1

f(x)− 1
2x f(x)

−f∗( 1
2 )

interpretation 2

f(x)

1
2x− f ∗(1

2)
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Conjugate properties

recall from lecture on convex functions:

• the conjugate is convex, since supremum of affine functions

• it is closed since epigraph intersection of closed half-spaces
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Further properties

• assume affine minorizer to f(x) on form 〈s0, x〉 − b
• the conjugate function f∗ 6≡ ∞:

f∗(s0) = sup
x
{〈s0, x〉 − f(x)} ≤ sup

x
{〈s0, x〉 − 〈s0, x〉+ b} ≤ b

• the conjugate f∗(s) > −∞ for all s and has affine minorizer:

f∗(s) = sup
x
{〈s, x〉 − f(x)} ≥ 〈s, x̄〉 − f(x̄)

where x̄ is a points with f(x̄) <∞ (exists by assumption)
(use same x̄ for all s to get affine minorizer)

• conjugate satisfies assumptions for taking conjugate!

6



Biconjugate

• the biconjugate f∗∗ is obtained by conjugating twice, i.e.

f∗∗(x) = (f∗)∗(x)

• biconjugate can be written as

f∗∗(x) = sup
s
{〈x, s〉 − f∗(s)}

= sup
s

{
〈x, s〉 − sup

z
{〈s, z〉 − f(z)}

}
= sup

s,r

{
〈x, s〉 − r | r = sup

z
{〈s, z〉 − f(z)}

}
= sup

s,r

{
〈x, s〉 − r | r ≥ sup

z
{〈s, z〉 − f(z)}

}
= sup

s,r
{〈x, s〉 − r | r ≥ 〈s, z〉 − f(z) for all z}

= sup
s,r
{〈s, x〉 − r | 〈s, z〉 − r ≤ f(z) for all z}

• do you recall this expression?
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Graphical interpretation

• expression:

f∗∗(x) = sup
y,r
{〈y, x〉 − r | 〈y, z〉 − r ≤ f(z) for all z}

“search for affine minorizers to f with largest value at x”

f(x)

f(1)
f∗∗(1)

• biconjugate is closed convex hull
• f∗∗ ≤ f
• f = f∗∗ ⇔ cl convf = f ⇔ f proper closed convex
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Fenchel’s inequality

• from definition of conjugate function

f∗(s) = sup
x
{〈s, x〉 − f(x)}

we get for any x, s ∈ Rn

f∗(s) + f(x) ≥ 〈s, x〉 or f(x) ≥ 〈s, x〉 − f∗(s)

f(x)

sx− f ∗(s)

• affine function x 7→ 〈s, x〉 − f∗(s) minorizes f(x)
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Fenchel-Young’s equality

• how do x and s relate when we have equality in

f(x) ≥ 〈s, x〉 − f∗(s)

i.e., when

f(x) = 〈s, x〉 − f∗(s)

(s,−1)

f(x)

sx− f ∗(s)

• we have equality iff (s,−1) ∈ Nepi f (x, f(x)) or s ∈ ∂f(x)
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Proof

f(x) = 〈s, x〉 − f∗(s) ⇔ s ∈ ∂f(x)

• s ∈ ∂f(x) iff (defintion of subgradient)

f(y) ≥ f(x) + 〈s, y − x〉 for all y

⇔ 〈s, y〉 − f(y) ≤ 〈s, x〉 − f(x) for all y

⇔ sup
y
{〈s, y〉 − f(y)} ≤ 〈s, x〉 − f(x)

⇔ f∗(s) ≤ 〈s, x〉 − f(x)

• Fenchel’s inequality always holds:

f∗(s) ≥ 〈s, x〉 − f(x)

inequality reversed ⇒ equality holds

• simple yet powerful result!
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Consequence of Fenchel-Young

for general f we have s ∈ ∂f(x) ⇒ x ∈ ∂f∗(s)

• proof: since s ∈ ∂f(x), Fenchel-Young and f ≥ f∗∗ gives

0 = f∗(s) + f(x)− 〈s, x〉 ≥ f∗(s) + f∗∗(x)− 〈s, x〉

• Fenchel’s inequality says that other direction holds:

0 ≤ f∗(s) + f∗∗(x)− 〈s, x〉

i.e., this implies equality,

0 = f∗(s) + (f∗)∗(x)− 〈s, x〉

which is equivalent to x ∈ ∂f∗(s)
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Consequence of Fenchel-Young

for general f we have x ∈ ∂f∗(x) ⇒ s ∈ ∂f∗∗(s)

• apply x ∈ ∂g(s)⇒ s ∈ ∂g∗(x) to g(s) = f∗(s):

x ∈ ∂g(s) = ∂f∗(s) ⇒ s ∈ ∂g∗(x) = ∂f∗∗(x)
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Consequence of Fenchel-Young

proper closed convex f :

• we have

f(x) + f∗(s)− 〈s, x〉 = 0⇔ s ∈ ∂f(x)⇔ x ∈ ∂f∗(s)

• proof:
• First equivalence: Fenchel-Young’s equality
• Second equivalence ⇒: as above
• Second equivalence ⇐: follows from f∗∗ = f :

x ∈ ∂f∗(s)⇒ s ∈ ∂f∗∗(x) = ∂f(x)
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Conjugation and optimization

• we have

inf
x
f(x) = − sup

x
{〈0, x〉 − f(x)} = −f∗(0)

• Fermat’s rule says:

x minimizes f(x) ⇔ 0 ∈ ∂f(x)

• can you characterize Argminx f(x) if f proper closed convex?

Argmin
x

f(x) = ∂f∗(0)

(since x ∈ ∂f∗(0) ⇔ 0 ∈ ∂f(x))
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Subdifferential of conjugate

• the subdifferential to the conjugate function satisfies

∂f∗(s) ⊇ Argmax
x
{〈s, x〉 − f(x)}

proof:

x? ∈ Argmax
x
{〈s, x〉 − f(x)} ⇔ x? ∈ Argmin

x
{f(x)− 〈s, x〉}

⇔ 0 ∈ ∂(f(x?)− 〈s, x?〉)
(assume)⇔ 0 ∈ ∂f(x?)− s

⇔ s ∈ ∂f(x?)

⇒ x? ∈ ∂f∗(s)

• if in addition f is closed convex, then

∂f∗(s) = Argmax
x
{〈s, x〉 − f(x)}

proof: last implication is equivalence in above proof
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Proof of assumption

• for any proper f , we have ∂(f(x)− 〈s, x〉) = ∂f(x)− s
• u ∈ ∂(f(x)− 〈s, x〉) iff

f(y)− 〈s, y〉 ≥ f(x)− 〈s, x〉+ 〈u, y − x〉
⇔ f(y) ≥ f(x) + 〈u+ s, y − x〉

i.e., iff u+ s ∈ ∂f(x) or ∂(f(x)− 〈s, x〉) + s = ∂f(x)

• example:

f(x)− 1
2x f(x)
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Subdifferential of function

• from previous slide: if f is closed convex, then

∂f∗(s) = Argmax
x
{〈s, x〉 − f(x)}

• apply to f∗ (since closed convex):

∂f∗∗(x) = Argmax
s
{〈x, s〉 − f∗(s)}

• if f closed convex, then f = f∗∗ and

∂f(x) = Argmax
s
{〈x, s〉 − f∗(s)}
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Relation between subdifferentials

• we know that for proper closed convex f

s ∈ ∂f(x) ⇔ x ∈ ∂f∗(s)
• ∂f and ∂f∗ are each others images under mapping (x, s) 7→ (s, x)
• example: f(x) = |x|, draw ∂f∗

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)
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Conjugate of image function and precomposition

• next we will compute the conjugates of image functions (Lg):

(Lg)(x) = inf
Ly=x

g(y)

• and the functions with precomposition (g ◦ L):

(g ◦ L)(x) = g(Lx)
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Conjugate of image function

• let g be proper with affine minorizer and L be a linear mapping
• assume:

ImL ∩ domg 6= ∅
• then Lg is proper and has an affine minorizer and its conjugate is

(Lg)∗ = g∗ ◦ L∗

• proof: (first show that Lg is proper and has affine minorizer)

(Lg)∗(s) = sup
x

{
〈s, x〉 − inf

Ly=x
g(y)

}
= sup
x,Ly=x

{〈s, x〉 − g(y)}

= sup
y
{〈s, Ly〉 − g(y)}

= sup
y
{〈L∗s, y〉 − g(y)}

= g∗(L∗s) = (g∗ ◦ L∗)(s)
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Conjugate of precomposition function

• let g be proper closed convex and L be a linear operator
• assume:

ImL ∩ ri domg 6= ∅

• then (g ◦ L)∗ = L∗g∗ and for every s ∈ dom(g ◦ L)∗,

(g ◦ L)∗(s) = L∗g∗(s) = min
p
{g∗(p) | L∗p = s}

i.e., the minimum is attained
• proof: apply previous result:

(L∗g∗)∗ = g∗∗ ◦ L∗∗ = g ◦ L

taking again the conjugate:

(g ◦ L)∗ = (L∗g∗)∗∗
?
= L∗g∗

where the last equality holds if (L∗g∗) is proper closed convex
• proper and convex shown before, closedness can be shown if

ImL ∩ ri domg 6= ∅
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Key result 1

• let’s summarize the results from the previous slides:

Assume that g is proper closed and convex, that L is a linear
operator, and that ImL ∩ ri domg 6= ∅ then for s ∈ dom (g ◦ L)∗:

(g ◦ L)∗(s) = (L∗g∗)(s) = min
p
{g∗(p) | L∗p = s}

i.e., the the conjugate of the precomposition function g ◦ L is the
image function (L∗g∗), and the minimum in the image function

definition is attained.

• this result will be the main result from which we can:
• prove subdifferential calculus rules
• derive strong duality
• show necessary and sufficient optimality conditions
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Key result 2

• let f, g be proper closed convex and L be linear and assume

ri domg ∩ ri L(domf) 6= ∅ ⇐⇒ ri dom(g ◦ L) ∩ ri dom f 6= ∅

• then

min
µ
{f∗(s− L∗µ) + g∗(µ)} = (f + g ◦ L)∗(s)

• (note that minimum attained)

• (actually a Corollary of Key result 1)
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Proof sketch of “Key result 2”

• let

h(x, y) := f(x) + g(y)

Kx := (x, Lx)

• then: (f + g ◦ L)∗ = (h ◦K)∗

• properties of h and K: assumption that

ri dom f ∩ ri dom (g ◦ L) 6= ∅
⇐⇒ ∃x|x ∈ ri dom f ∩ ri dom (g ◦ L)

⇐⇒ ∃x|(x, x) ∈ ri dom f × ri dom (g ◦ L)

⇐⇒ ∃x|(x, Lx) ∈ ri dom f × ri dom g

⇐⇒ ∃x|(x, Lx) ∈ ri (dom f × dom g)

⇐⇒ Im K ∩ ri dom h 6= ∅

• ⇒ can apply “Key result 1”!
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Proof continued

• to use “Key result” ((h ◦K)∗(s) = (K∗h∗)(s)) compute K∗, h∗:

• adjoint K∗ to Kx = (x, Lx) is given by:

〈Kx, (y, z)〉 = 〈x, y〉+ 〈Lx, z〉 = 〈x, y〉+ 〈x, L∗z〉
= 〈x, y + L∗z〉 = 〈x,K∗(y, z)〉

i.e., K∗(y, z) = y + L∗z and

• conjugate h∗ is given by:

h∗(λ, µ) = sup
x,y
{〈(λ, µ), (x, y)〉 − f(x)− g(y)}

= sup
x,y
{〈λ, x〉+ 〈µ, y〉 − f(x)− g(y)}

= sup
x
{〈λ, x〉 − f(x)}+ sup

y
{〈µ, y〉 − g(y)}

= f∗(λ) + g∗(µ)
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Proof continued

• apply “Key result 1”:

(f + g ◦ L)∗(s) = (h ◦K)∗(s)

= (K∗h∗)(s)

= min
K∗(λ,µ)=s

h∗(λ, µ)

= min
µ,λ
{f∗(λ) + g∗(µ) : λ+ L∗µ = s}

= min
µ
{f∗(s− L∗µ) + g∗(µ)}

• where we get existence of µ and λ due to “Key result 1”

27



Notes on Key results

• Key result 2 is Corollary of Key result 1

• Key result 1 and 2 will be used to show when

∂(f + g ◦ L) = ∂f + L∗ ◦ ∂g ◦ L

(which will be used to show optimality conditions)

• Key result 2 will also be used to show when strong duality holds
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Subdifferential sum

• for differentiable f and g, the chain-rule gives

∇(f + g ◦ L) = ∇f + L∗ ◦ ∇g ◦ L

• for subdifferentiable functions f and g, when do we have

∂(f + g ◦ L) = ∂f + L∗ ◦ ∂g ◦ L?
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Subdifferential sum

• we start with the case where L = Id

• assume that f, g are proper closed and convex and that

ri domg ∩ ri domf 6= ∅

then

∂(f + g)(x) = ∂f(x) + ∂g(x)

for every x ∈ dom (f + g) = dom f ∩ dom g
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Proof of subdifferential sum ⇐

• assume that s1 ∈ ∂f(x) and s2 ∈ ∂g(x)

• add definitions of subdifferential operator

f(y) + g(y) ≥ f(x) + g(x) + 〈s1 + s2, y − x〉
⇐⇒ (f + g)(y) ≥ (f + g)(x) + 〈s1 + s2, y − x〉

• therefore s1 + s2 ∈ ∂(f + g)(x)
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Proof of subdifferential sum ⇒

• assume that s ∈ ∂(f + g)(x)
• Fenchel-Young’s equality gives

(f + g)∗(s) + (f + g)(x)− 〈s, x〉 = 0

• since s ∈ dom(f + g)∗ we apply “Key result 2”, i.e., there ∃µ:

f∗(s− µ) + g∗(µ) + f(x) + g(x)− 〈s, x〉 = 0 (1)

• by Fenchel-Young’s inequality, we have

f∗(s− µ) + f(x)− 〈s− µ, x〉 ≤ 0

g∗(µ) + g(x)− 〈µ, x〉 ≤ 0

• by (1), these must be equalities, i.e.:

s− µ ∈ ∂f(x) µ ∈ ∂g(x)

and

s = (s− µ) + µ ∈ ∂f(x) + ∂g(x)
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Example – First-order optimality condition

• assume that ri dom f ∩ ri C 6= ∅
• an x optimizes infx∈C f(x) iff there exists s ∈ ∂f(x) such that

〈s, y − x〉 ≥ 0 for all y ∈ C

and x ∈ C
• proof: ∂(f + ιc)(x) = ∂f(x) +NC(x)

• optimality condition: 0 ∈ ∂f(x) +NC(x) or for any s̄ ∈ ∂f(x):

−s̄ ∈ NC(x) = {s | 〈s, y − x〉 ≤ 0 for all y ∈ C}

for x ∈ C (otherwise NC(x) is empty)
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Graphical interpretation

• first-order optimality condition: there exists s̄ ∈ ∂f(x) such that

−s̄ ∈ NC(x) = {s | 〈s, y − x〉 ≤ 0 for all y ∈ C}

C NC(x)

f(x) = 2

f(x) = 4

f(x) = 1

s̄
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Precomposition

• next, we cover the pure composition case

• assume that f is proper closed and convex and that

Im L ∩ ri dom g 6= ∅ ⇐⇒ ri dom (g ◦ L) 6= ∅

then

∂(g ◦ L)(x) = L∗ ◦ ∂g(Lx)

for every Lx ∈ dom g
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Precomposition proof ⇐

• assume that p ∈ ∂g(Lx) with Lx ∈ dom g

• subdifferential definition with z = Ly:

g(z) ≥ g(Lx) + 〈p, z − Lx〉
=⇒ g(Ly) ≥ g(Lx) + 〈p, Ly − Lx〉
=⇒ (g ◦ L)(y) ≥ (g ◦ L)(x) + 〈L∗p, y − x〉

that is, L∗p ∈ ∂(g ◦ L)(x) or L∗∂g(Lx) ⊆ ∂(g ◦ L)(x)
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Precomposition proof ⇒

• assume that s ∈ ∂(g ◦ L)(x), i.e., that

(g ◦ L)∗(s) + (g ◦ L)(x)− 〈s, x〉 = 0 (2)

• assumptions imply “Key result 1” can be used:

(g ◦ L)∗(s) = (L∗g∗)(s) = min
p
{g∗(p) | L∗p = s} = g∗(p̄)

where L∗p̄ = s

• therefore (2) becomes

0 = g∗(p̄) + g(Lx)− 〈L∗p̄, x〉 = g∗(p̄) + g(Lx)− 〈p̄, Lx〉

• which implies p̄ ∈ ∂g(Lx), s ∈ L∗∂g(Lx), and
∂(g ◦ L)(x) ⊆ L∗∂g(Lx)
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Sum and composition

• adding the two previous results on f and h = g ◦ L, we get:

∂(f + h)(x) = ∂f(x) + ∂(g ◦ L)(x) = ∂f(x) + L∗∂g(Lx) (3)

provided that assumptions hold

• we assume:

ri domg ∩ ri L(domf) 6= ∅ ⇐⇒ ri dom(g ◦ L) ∩ ri dom f 6= ∅

• since ri dom (g ◦ L) = ri dom h 6= ∅, composition and sum OK!

• (will use (3) to derive optimality conditions)
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Image function

• suppose that f is proper closed and convex

• suppose that x ∈ dom(Lg) = L(domg) and that there exists ȳ
with Lȳ = x and g(ȳ) = (Lg)(x), which holds e.g., if

ImL∗ ∩ ri dom g∗ 6= ∅

• then

∂(Lg)(x) = {s | L∗s ∈ ∂g(ȳ)}
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Proof

• recall ∃ȳ with Lȳ = x and g(ȳ) = (Lg)(x)

• that s ∈ ∂(Lg)(x) is, by Fenchel-Young, equivalent to that

(Lg)∗(s) + (Lg)(x)− 〈s, x〉 = 0

or

(Lg)∗(s) + g(ȳ)− 〈s, Lȳ〉 = 0

since (Lg)∗ = g∗ ◦ L∗, i.e., (Lg)∗(s) = g∗(L∗s) we have

g∗(L∗s) + g(ȳ)− 〈L∗s, ȳ〉 = 0

or equivalently L∗s ∈ ∂g(ȳ), i.e. ∂(Lg) = {s | L∗s ∈ ∂g(ȳ)}
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