
Algorithms II

Pontus Giselsson

1

Today’s lecture

• Douglas-Rachford splitting

• linearized Douglas-Rachford methods

• the alternating direction method of multipliers

• a three operator splitting method

2

Douglas-Rachford splitting

• assume that A and B are maximally monotone operators

• we want to find x such that

0 ∈ Ax+Bx

3

Optimality condition

• optimality condition:

0 ∈ Ax+Bx ⇔ 0 ∈ (Id + γA)x− (Id− γB)x

⇔ 0 ∈ (Id + γA)x−RγB(Id + γB)x

⇔ 0 ∈ (Id + γA)x−RγBz, z ∈ (Id + γB)x

⇔ RγBz ∈ (Id + γA)x, x ∈ JγBz
⇔ JγARγBz = JγBz, x ∈ JγBz

finally, this is equivalent to that

RγARγBz = 2JγARγBz −RγBz = 2JγBz −RγBz = z

• that is, 0 ∈ Ax+Bx if and only if

z = RγARγBz, x = JγBz

4

Algorithm

• optimality conditions

z = RγARγBz, x = JγBz

• construct an algorithm that finds fixed-point:

zk+1 = RγARγBz
k

• we know that RγA, RγB are nonexpansive ⇒ so is composition

• iteration of nonexpansive operator not guaranteed to converge

5

Averaged iteration

• we instead iterate the averaged map (with α ∈ (0, 1)):

zk+1 = ((1− α)Id + αRγARγB)zk =: Tαz
k

• obviously, this is an averaged iteration ⇒ sublinear convergence

• A or B strongly monotone and cocoercive

⇒ RγA or RγB contractive ⇒ RγARγB contractive

⇒ linear convergence of algorithm

6

Application to optimization

• suppose that f and g are proper closed and convex

• we want to solve

minimize f(x) + g(x)

• under suitable constraint qualification, equivalent to finding x s.t.:

0 ∈ ∂f(x) + ∂g(x)

• can find such x using DR since ∂f, ∂g maximally monotone

7

Douglas-Rachford for optimization

• the Douglas-Rachford algorithm for convex optimization is

zk+1 = ((1− α)Id + αRγgRγf)zk

= (1− α)zk + α(2JγgRγf −Rγf)zk

= zk + α(2JγgRγf − 2Jγf)zk

where Rγf = 2Jγf − Id = 2proxγf − Id

• the algorithm can be implemented as

xk = proxγf (zk)

yk = proxγg(2x
k − zk)

zk+1 = zk + 2α(yk − xk)

• zk converges to fixed-point of RγgRγf
• xk = proxγfz

k converges to solution of optimization problem

8

Optimality condition

• we know that DR converges to fixed-point z̄, at convergence:

x̄ = proxγf (z̄)

ȳ = proxγg(2x̄− z̄)
z̄ = z̄ + 2α(ȳ − x̄)

• Fermat’s rule gives

0 ∈ γ∂f(x̄) + x̄− z̄
0 ∈ γ∂g(ȳ) + ȳ − 2x̄+ z̄

0 = ȳ − x̄
• let µ = x̄− z̄, to get

0 ∈ γ∂f(x̄) + µ

0 ∈ γ∂g(ȳ)− µ
0 = ȳ − x̄

• i.e., x̄, ȳ primal optimal µ = x̄− z̄ dual optimal

9

Problems with compositions

• assume that f, g are proper closed and convex and that L is linear

• we want to solve

minimize f(x) + (g ◦ L)(x) = f(x) + g(Lx)

• can apply (primal) Douglas-Rachford, need to solve

proxγ(g◦L)(z) = argmin
x
{g(Lx) + 1

2γ ‖x− z‖
2}

• can be evaluated using Moreau type identity

proxγ(g◦L)(z) = z − γL∗ argmin
µ
{g∗(µ) + γ

2 ‖L
∗µ− γ−1z‖2}

(provided argmin exists)

• often expensive, e.g., if g separable, then g ◦ L typically not

10

Problems with compositions

• we can instead solve dual

minimize (f∗ ◦ −L∗)(µ) + g∗(µ) = f∗(−L∗µ) + g∗(µ)

• to apply DR to dual need to solve in each iteration

proxγ(f∗◦−L∗)(z)

• can be evaluated through

proxγ(f∗◦−L∗)(z) = z + γL argmin
x
{f(x) + γ

2 ‖Lx+ γ−1z‖2}

(might be expensive due to Lx in norm)

• also need to evaluate proxγg∗ , can use

proxγg∗(z) = z − γ argmin
y
{g(y) + γ

2 ‖y − γ
−1z‖2}

= z − γproxγ−1g(γ
−1z)

11

Primal dual DR algorithm

• the DR algorithm (with α = 1
2) applied to dual problem:

uk+1 = proxγ(f∗◦−L∗)(z
k)

λk+1 = proxγg∗(2uk+1 − zk)

zk+1 = zk + (λk+1 − uk+1)

• can be written in primal dual form as (uk+1 inserted)

xk+1 = argmin
x
{f(x) + γ

2 ‖Lx+ γ−1zk‖2}

uk+1 = zk + γLxk+1

λk+1 = proxγg∗(2γLxk+1 + zk)

zk+1 = λk+1 − γLxk+1

• or (remove uk+1 since not used, and insert zk+1)

xk+1 = argmin
x
{f(x) + γ

2 ‖Lx+ γ−1(λk − γLxk)‖2}

λk+1 = proxγg∗(2γLxk+1 − γLxk + λk)
12

Primal dual DR algorithm

• the primal-dual DR iteration

xk+1 = argmin
x
{f(x) + γ

2 ‖Lx+ γ−1(λk − γLxk)‖2}

λk+1 = proxγg∗(2γLxk+1 − γLxk + λk)

• optimality conditions for iterates

0 ∈ ∂f(xk+1) + γL∗(Lxk+1 + γ−1(λk − γLxk))

0 ∈ ∂g∗(λk+1) + γ−1(λk+1 − 2γLxk+1 + γLxk − λk)

• add ±L∗λk+1 to first line to get

0 ∈

{
∂f(xk+1) + L∗λk+1

∂g∗(λk+1)− Lxk+1
+

[
γL∗L −L∗
−L γ−1I

] [
xk+1 − xk
λk+1 − λk

]

13

Primal dual DR algorithm

• primal dual DR algorithm iterations satisfy

0 ∈

{
∂f(xk+1) + L∗λk+1

∂g∗(λk+1)− Lxk+1︸ ︷︷ ︸
A(xk+1,λk+1)

+

[
γL∗L −L∗
−L γ−1Id

]
︸ ︷︷ ︸

G

[
xk+1 − xk
λk+1 − λk

]

• that is, skewed resolvent method with operator A and metric G

• opertator A is

A(x, λ) = F (x, λ) +M(x, λ), F (x, λ) = (∂f(x), ∂g∗(λ))

M(x, λ) = (L∗λ,−Lx)

• F,M maximally monotone (M skew-symmetric, i.e., M∗ = −M)

• A is maximally monotone (not in general, but here it holds)

14

Convergence

• algorithm is yk+1 = (A+G)−1Gyk =: Tyk with y = (x, λ)
• we know that yk+1 unique and G positive semi-definite
• therefore T is 1

2 -averaged in G-(semi)norm, where

G(x, λ) =

[
γL∗Lx− L∗λ
−Lx+ γ−1λ

]
• therefore, have convergence in G-(semi)norm
• that is, as k →∞

‖yk+1 − yk‖G = ‖Tyk − yk‖G → 0

• we have

‖y‖2G = 〈G(x, λ), (x, λ)〉 = 〈(γL∗Lx− L∗λ,−Lx+ γ−1λ), (x, λ)〉
= 〈γL∗Lx, x〉 − 〈L∗λ, x〉 − 〈Lx, λ〉+ 〈γ−1λ, λ〉
= 〈√γLx,√γLx〉 − 2〈Lx, λ〉+ 〈 1√

γλ,
1√
γλ〉

= ‖√γLx− 1√
γλ‖

2 = 1
γ ‖γLx− λ‖

2

15

Convergence cont’d

• therefore

√
γ‖yk+1 − yk‖G = ‖(γLxk+1 − λk+1)− (γLxk − λk)‖ → 0

• recall primal dual DR (formulation of dual DR)

xk+1 = argmin
x
{f(x) + γ

2 ‖Lx+ γ−1zk‖2}

λk+1 = proxγg∗(2γLxk+1 + zk)

zk+1 = λk+1 − γLxk+1

• therefore

‖zk+1 − zk‖ = ‖ 1
2z
k + 1

2Rγ(f∗◦−L∗)Rγg∗z
k − zk‖

= 1
2‖Rγ(f∗◦−L∗)Rγg∗z

k − zk‖ → 0

• already knew this, nice to get same result with different analysis

16

Primal formulation of dual DR

• got primal dual DR from DR on dual problem using identity:

proxγ(f∗◦−L∗)(z) = z + γL argmin
x
{f(x) + γ

2 ‖Lx+ γ−1z‖2}

• primal dual DR (use this formulation since easier later):

xk+1 = argmin
x
{f(x) + γ

2 ‖Lx+ γ−1zk‖2}

λk+1 = proxγg∗(2γLxk+1 + zk)

zk+1 = λk+1 − γLxk+1

• use Moreau’s identity on proxγg∗ :

proxγg∗(z) = z − γ argmin
y
{g(y) + γ

2 ‖y − γ
−1z‖2}

• then λk+1-update can be written as

yk+1 = argmin
y
{g(y) + γ

2 ‖y − γ
−1(2γLxk+1 + zk)‖2}

λk+1 = 2γLxk+1 + zk − γyk+1

17

ADMM

• insert into primal dual DR

xk+1 = argmin
x
{f(x) + γ

2 ‖Lx+ γ−1(λk − γLxk)‖2}

yk+1 = argmin
y
{g(y) + γ

2 ‖y − γ
−1(2γLxk+1 + zk)‖2}

λk+1 = 2γLxk+1 + zk − γyk+1

zk+1 = λk − γLxk+1

• replace λk and remove λk-update

xk+1 = argmin
x
{f(x) + 〈zk−1 + γLxk, Lx〉+ γ

2 ‖Lx− y
k‖2}

yk+1 = argmin
y
{g(y)− 〈zk + γLxk+1, y〉+ γ

2 ‖y − Lx
k+1‖2}

zk+1 = zk + γ(Lxk+1 − yk+1)

18

ADMM

• let µk+1 = zk + γLxk+1:

xk+1 = argmin
x
{f(x) + 〈µk, Lx〉+ γ

2 ‖Lx− y
k‖2}

yk+1 = argmin
y
{g(y)− 〈µk+1, y〉+ γ

2 ‖y − Lx
k+1‖2}

zk+1 = zk + γ(Lxk+1 − yk+1)

• the zk+1-update (shifted one step) can be written as

µk+1 − γLxk+1 = µk − γLxk + γ(Lxk − yk)

• we get

xk+1 = argmin
x
{f(x) + 〈µk, Lx〉+ γ

2 ‖Lx− y
k‖2}

yk+1 = argmin
y
{g(y)− 〈µk+1, y〉+ γ

2 ‖y − Lx
k+1‖2}

µk+1 = µk + γ(Lxk+1 − yk)

19

ADMM

• let ȳk+1 = yk, we get

xk+1 = argmin
x
{f(x) + 〈µk, Lx〉+ γ

2 ‖Lx− ȳ
k+1‖2}

ȳk+2 = argmin
y
{g(y)− 〈µk+1, y〉+ γ

2 ‖y − Lx
k+1‖2}

µk+1 = µk + γ(Lxk+1 − ȳk+1)

• change order of first two iterates (and present shifted ȳ-update)

ȳk+1 = argmin
y
{g(y)− 〈µk, y〉+ γ

2 ‖y − Lx
k‖2}

xk+1 = argmin
x
{f(x) + 〈µk, Lx〉+ γ

2 ‖Lx− ȳ
k+1‖2}

µk+1 = µk + γ(Lxk+1 − ȳk+1)

• dual DR is called the alternating direction method of multipliers

• very similar to dual proximal gradient method
(only ‖ · ‖2 term in first argmin that is different)

20

Optimality conditions

• we know that ADMM converges to a fixed-point

• the following holds for fixed-points x̄, ȳ, µ̄

x̄ = argmin
x̄
{f(x̄) + 〈µ̄, Lx̄〉+ γ

2 ‖Lx̄− ȳ‖
2}

ȳ = argmin
ȳ
{g(ȳ)− 〈µ̄, ȳ〉+ γ

2 ‖ȳ − Lx̄‖
2}

µ̄ = µ̄+ γ(Lx̄− ȳ)

• Fermat’s rule and Lx̄ = ȳ give

0 ∈ ∂f(x̄) + L∗µ̄

0 ∈ ∂g(ȳ)− µ̄
0 = Lx̄− ȳ

which are the optimality conditions

21

Several g functions

• assume we want to solve

minimize f(x) +

k∑
i=1

gi(yi)

subject to Lix = yi for all i = 1, . . . , k

• if f ≡ 0 and all Li = I, then it is minx
∑k
i=1 gi(x)

• introduce

y =

y1

...
yk

 , L =

L1

...
Lk

 , g(y) =

k∑
i=1

gi(yi)

• then problem can be rewritten as

minimize f(x) + g(Lx)

22

Apply ADMM

• assume that f ≡ 0, and Li = I for all i, then ADMM becomes

xk+1 = argmin
x
{〈µk, Lx〉+ γ

2 ‖Lx− y
k‖2}

yk+1 = argmin
y
{g(y)− 〈µk, y〉+ γ

2 ‖y − Lx
k+1‖2}

µk+1 = µk + γ(Lxk+1 − yk+1)

• then first argmin becomes:

xk+1 = 1
k

k∑
i=1

(yi − γ−1µi)

• second argmin becomes block separable and each yi is updated as

yk+1
i = argmin

yi

{gi(yi) + 〈µki , yi〉+ γ
2 ‖yi − x

k+1‖2}

which is the prox

23

Further properties of DR

• it can be shown that DR equivalent if applied to

minimize f(x) + g(x)

or dual

minimize f∗(−µ) + g∗(µ)

• it can also be shown that DR equivalent if applied to

minimize f∗(−L∗µ) + g∗(µ)

or (where (Lf) = infLx=y f(x))

minimize (Lf)(y) + g(y)

(so ADMM is obtained by applying DR on latter as well)

24

Convergence

• primal DR and dual DR (ADMM) are averaged iterations ⇒
sublinear convergence

• linear convergence in primal case if either Rγf or Rγg contractive
• holds if f or g strongly convex and smooth

• linear convergence if Rγf averaged and Rγg negatively averaged
• holds if f smooth and g strongly convex

• linear convergence in dual case if Rγ(f∗◦−L∗) or Rγg∗ contractive
• holds if f strongly convex and smooth and L surjective
• or if g strongly convex and smooth

• linear convergence if Rγ(f∗◦L∗) averaged and Rγg∗ neg. averaged
• holds if f strongly convex and g smooth

25

Limitation

• want to solve minx{f(x) + g(Lx)}
• primal DR needs to solve in every iteration

proxγ(g◦L)(z) = argmin
x
{g(Lx) + 1

2γ ‖x− z‖
2}

which can be evaluated as

proxγ(g◦L)(z) = z − γL∗ argmin
µ
{g∗(µ) + γ

2 ‖L
∗µ− γ−1z‖2}

• dual DR (ADMM) needs to solve in every iteration

proxγ(f∗◦(−L∗))(z) = argmin
x
{f∗(−L∗µ) + 1

2γ ‖µ− z‖
2}

which can be evaluated as

proxγ(f∗◦(−L∗))(z) = z + γL argmin
x
{f(x) + γ

2 ‖Lx+ γ−1z‖2}

• these might be expensive due to operator L

26

Apply to monotone inclusion problem

• we know that x and y solves

minimize f(x) + g(y)
subject to Lx = y

if and only if

0 ∈ F (x, µ) +M(x, µ)

where F (x, µ) = (∂f(x), ∂g∗(µ)) and M(x, µ) = (L∗µ,−Lx)

• that is, if and only if

0 ∈ ∂f(x) + L∗µ

0 ∈ ∂g∗(µ)− Lx

• F,M are monotone (M = −M∗, i.e. skew-symmetric)
⇒ can be solved using DR

27

The algorithm

• the algorithm becomes

vk = JγF z
k

uk = JγM (2vk − zk)

zk+1 = zk + 2α(uk − vk)

• recall F (x, µ) = (∂f(x), ∂g∗(µ)) and M(x, µ) = (L∗µ,−Lx)

• let z = (z1, z2) and v = (v1, v2), the algorithm becomes

xk = proxγf (zk1)

yk = proxγg(z
k
2)

vk = JγM ((2xk − zk1 , 2yk − zk2))

zk+1
1 = zk1 + 2α(vk1 − xk)

zk+1
2 = zk2 + 2α(vk2 − yk)

• avoids having L in prox (but must compute resolvent of M)

28

Linearized methods

• another way to avoid proximal evaluations with compositions
• recall that the primal-dual formulation of dual DR is:

0 ∈

{
∂f(xk+1) + L∗λk+1

∂g∗(λk+1)− Lxk+1
+

[
γL∗L −L∗
−L γ−1Id

] [
xk+1 − xk
λk+1 − λk

]
• in short, this algorithm can be written as

zk+1 = (A+G)−1Gzk

where A = F +M and

F (x, λ) = (∂f(x), ∂g∗(λ)), M(x, λ) = (L∗λ,−Lx)

and

G(x, λ) = (γL∗Lx− L∗λ,−Lx+ γ−1λ)

• it is the skewed resolvent algorithm for A = F +M
⇒ convergence in G-norm

• have already shown convergence for that specific G
• any positive definite G will guarantee convergence

29

Replace metric matrix

• use metric G such that

G(x, λ) = (γPx− L∗λ,−Lx+ γ−1λ)

with P � L∗L, then G positive definite

• or in matrix notation

G =

[
γP −L∗
−L γ−1Id

]

30

Selecting P

• we select P � L∗L to be diagonal

• the optimality conditions for the algorithm become

0 ∈

{
∂f(xk+1) + L∗λk+1

∂g∗(λk+1)− Lxk+1
+

[
γP −L∗
−L γ−1Id

] [
xk+1 − xk
λk+1 − λk

]
• and the algorithm becomes

xk+1 = argmin
x
{f(x) + 〈L∗λk, x〉+ γ

2 ‖x− x
k‖2P }

λk+1 = proxγg∗(2γLxk+1 − γLxk + λk)

• diagonal P does not increase complexity of argmin

• separability of f can be exploited in prox computation!

31

Quadratic example

• assume we want to solve

minimize f(x) + g(Lx)

where f(x) = 1
2x

THx+ qTx and H positive semi-definite

• update in linearized method is

xk+1 = argmin
x
{f(x) + 〈L∗λk, x〉+ γ

2 ‖x− x
k‖2P }

• optimality condition for update:

0 = Hxk+1 + q − LTµk + γP (xk+1 − xk)

• that is, we need to invert (H + P) to compute xk+1

32

Quadratic problems

• assume that f(x) = 1
2x

THx+ qTx is convex
• linearized method becomes

0 ∈

{
Hxk+1 + q + L∗λk+1

∂g∗(λk+1)− Lxk+1
+

[
γP −L∗
−L γ−1Id

] [
xk+1 − xk
λk+1 − λk

]
• let P = P̂ − γ−1H, for some diagonal P̂ � γ−1H + L∗L, then

0 ∈

{
Hxk+1 + q + L∗λk+1

∂g∗(λk+1)− Lxk+1
+

[
γP̂ −H −L∗
−L γ−1Id

] [
xk+1 − xk
λk+1 − λk

]
• then optimality conditions for xk+1-update is

0 = Hxk + q + L∗λk + γP̂ (xk+1 − xk)

or

xk+1 = xk − γ−1P̂−1(q +Hxk + L∗λk)

• since P̂ diagonal, very cheap iteration!
• metric positive definite ⇒ convergence

33

Linearized method for inclusion problems

• recall the optimality conditions for the linearized algorithm

0 ∈

{
∂f(xk+1) + L∗λk+1

∂g∗(λk+1)− Lxk+1
+

[
γP −L∗
−L γ−1Id

] [
xk+1 − xk
λk+1 − λk

]
• we can replace ∂f by A and ∂g∗ by B−1

0 ∈

{
Axk+1 + L∗λk+1

B−1λk+1 − Lxk+1
+

[
γP −L∗
−L γ−1Id

] [
xk+1 − xk
λk+1 − λk

]
• we get proximal point algorithm for sum of monotone operators

F (x, λ) = (Ax,B−1λ), M(x, λ) = (L∗λ,−Lx)

• convergence of same reason as before

34

Three operator splitting method

• recently a three operator splitting method was presented

• it generalizes DR splitting and FB splitting

• it solves problems of the form

0 ∈ Ax+Bx+ Cx

where A and B are monotone operators and C 1
β -cocoercive

35

Inclusion conditions

• x solves inclusion 0 ∈ Ax+Bx+Cx if and only if for γ ∈ (0,∞):

0 ∈ (Id + γA)x− (Id− γB)x+ γCx

⇔ 0 ∈ (Id + γA)x−RγB(Id + γB)x+ γCx

⇔ 0 ∈ (Id + γA)x−RγBz + γCx, z ∈ (Id + γB)x

⇔ 0 ∈ (Id + γA)x−RγBz + γCx, x = JγBz

⇔ 0 ∈ (Id + γA)JγBz −RγBz + γCJγBz, x = JγBz

⇔ (RγB − γCJγB)z ∈ (Id + γA)JγBz, x = JγBz

⇔ JγA(RγB − γCJγB)z = JγBz, x = JγBz

⇔ (RγA(RγB − γCJγB)− γCJγB)z = z, x = JγBz

• the last step holds since

(RγA(RγB − γCJγB)− γCJγB)

= 2JγA(RγB − γCJγB)− (RγB − γCJγB)− γCJγB
= 2JγB −RγB
= 2JγB − 2JγB + Id = Id

36

Special cases

• condition:

(RγA(RγB − γCJγB)− γCJγB)z = z, x = JγBz

• let B = 0, then JγB = RγB = Id:

(RγA(Id− γCId)− γCId)z = z, x = z

⇔ (2JγA(Id− γCId)− (Id− γCId)− γCId)x = x

⇔ 2JγA(Id− γCId)x = 2x

this is optimality condition for Forward-Backward splitting

• let C = 0:

RγARγBz = z, x = JγBz

this is optimality condition for Douglas-Rachford splitting

37

Operator properties

• let γ ∈ (0, 2
β)

• it can be shown that

T = 1
2 Id + 1

2 (RγA(RγB − γCJγB)− γCJγB)

is 2
4−γβ -averaged

• the everagedness factor 2
4−γβ ∈ (1

2 , 1)

• therefore, iterating xk+1 = Txk converges sublinearly

• stronger convergence can be obtained under various assumptions

38

Comments

• can be applied to solve convex optimization problems of the form

minimize f(x) + g(x) + h(x)

where one function is β-smooth

• can also be applied to solve dual of

minimize f(x) + g(y) + h(z)
subject to L1x+ L2y + L3z = 0

which is

minimize f∗(−L∗1µ) + g∗(−L∗2µ) + h∗(−L∗3µ)

if f strongly convex ⇒ f∗ ◦ −L∗1 smooth

39

