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Today’s lecture

Douglas-Rachford splitting
linearized Douglas-Rachford methods
the alternating direction method of multipliers

a three operator splitting method



Douglas-Rachford splitting

e assume that A and B are maximally monotone operators

e we want to find x such that

0€ Az + Bz



Optimality condition

e optimality condition:

0€Az+Bx < 0€(Id+~A)z— (Id—+B)x
& 0e€(d+~A)x— R,p(Id+~B)z
< 0e€e(d+~A)xr—Rypz, z€ (Id+B)x
& Rypze (Id+~A)z, x € Jypz
& JyaR,pz=Jypz, x € J,pz

finally, this is equivalent to that
R'yARfyBZ = QJWAR,YBZ — RWBZ = 2J7BZ — R'yBZ =2z
e thatis, 0 € Az + Bx if and only if

z=RyaR,Bz, r=Jypz



Algorithm

optimality conditions
z2=RysR,Bz, = Jypz
construct an algorithm that finds fixed-point:
SRl R'yARfyBZk

we know that R, 4, R,p are nonexpansive = so is composition
iteration of nonexpansive operator not guaranteed to converge



Averaged iteration

e we instead iterate the averaged map (with o € (0,1)):
= (1 - @)ld+ aRyaR, )" = T, 2"

e obviously, this is an averaged iteration = sublinear convergence
e A or B strongly monotone and cocoercive
= R4 or R,p contractive = R, 4%,p contractive

= linear convergence of algorithm



Application to optimization

suppose that f and g are proper closed and convex

we want to solve
minimize f(z) + g(x)
under suitable constraint qualification, equivalent to finding x s.t.:
0€df(x)+ dg(x)

can find such x using DR since 0f, 09 maximally monotone



Douglas-Rachford for optimization

the Douglas-Rachford algorithm for convex optimization is

= ((1 - a)ld+ aR, Ryf)zF
=(1-a)f+ a(2JygRyy — va)zk
=2F f (2, Ry — 20, 5)2"
where Ry = 2J,¢ — Id = 2prox; — Id
the algorithm can be implemented as
D proxvf(zk)
y* = prox,yg(ka — 2k
2P =2k L 2a(yk — o)

2* converges to fixed-point of R, Rys

a% = prox, 2" converges to solution of optimization problem



Optimality condition

we know that DR converges to fixed-point Z, at convergence

prox. ¢(2)
y = prox. (27 — z)
Z=Zz+42a(y—I)
e Fermat's rule gives

0eryf(z)+z—2

0€~09(y) +7—2T+ 2

0=g§—2

let u = — Z, to get

0€~Of(T) +
0€~9g9(y) — n
0=g§—=

i.e., T, y primal optimal = ¥ — Z dual optimal



Problems with compositions

assume that f, g are proper closed and convex and that L is linear

we want to solve
minimize f(z) + (9o L)(z) = f(x) + g(Lx)
can apply (primal) Douglas-Rachford, need to solve
Prox, (gor) (2) = argmin{g(La) + e —21%}
can be evaluated using Moreau type identity

Prox, gor, () = 2 = 7L" argmin{g” (u) + F[1L* - v %)

(provided argmin exists)
often expensive, e.g., if g separable, then g o L typically not
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Problems with compositions

we can instead solve dual

minimize (f* o —L")(u) +g" (1) = f*(=L"p) + g" (1)

to apply DR to dual need to solve in each iteration

ProX.,(fro—r+)(2)

can be evaluated through
ProX,(po_r+)(2) = 2 + yLargmin{f(z) + || Lz + v 12|12}

(might be expensive due to Lz in norm)
also need to evaluate prox,,., can use

prox. .. (2) = z — yargmin{g(y) + |ly — v '2|I"}
Yy

=z — yprox,-1,(7'2)
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Primal dual DR algorithm

e the DR algorithm (with a = 1) applied to dual problem:

uf = prox,y(f*o_L*)(zk)

N = prox, . (2uFT! — 2F)
Zk+1 — Zk: + ()\k+1 o ukJrl)
e can be written in primal dual form as (u**! inserted)

A1 = argmin{f(2) + 3L + 71247}

I

AR = prox . (2yLa* T 4 2F)

R N 7 aa

u

e or (remove u**! since not used, and insert zF*1)

2F T = argmin{ f (z) + Zl| L + YA —yLa®)|1?}

AL = prox, . (2yLa* Tt — yLa® + AF)
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Primal dual DR algorithm

e the primal-dual DR iteration

"t = argmin{f(x) + || Lz + 771 (A" — yLa®)|*}

k k
PUREE prox., . (2yLx +

e optimality conditions for iterates

— yLak + \F)

0 € of (@) +yL*(La" + 4 (\F — yLa™))

= ag*()\k+1) +771()\k+1 _

e add £L*X**1 to first line to get

0c af(l,kJrl) + L*\k+1
ag*()\k+1) _ kaJrl

2yLa* 1 4 yLa* — \F)

yL*L  —L*| [2* — ¢
—L ’771.[ /\k+1 Y

k
k

|
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Primal dual DR algorithm

primal dual DR algorithm iterations satisfy

Ag* (A\F+1) — Lokl —L  A7Hd| [ AR )E
—
G

0 {0f(:rk+1) + L*\F+1 PL*L —L* } {xk“ - xk}

A(xk+1 AB+1)

that is, skewed resolvent method with operator A and metric G

opertator A is

A(xv /\) - F(I7>‘) + M(I7>‘)7 F(Qja}‘) - (8f(x),ag*(>\))
M(z,\) = (L*\,—Lx)

F, M maximally monotone (M skew-symmetric, i.e., M* = —M)

A is maximally monotone (not in general, but here it holds)
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Convergence

algorithm is y**! = (A + G)~'Gy* =: Ty* with y = (z, ))
we know that »**1 unique and G positive semi-definite
therefore T is J-averaged in G-(semi)norm, where

L*Lx — L*\
G(mﬂ/\) = [V_L$+7_1)\:|

therefore, have convergence in G-(semi)norm
that is, as k — oo

k+1

15 =¥ lle = 1Ty" — y"llc — 0

we have

Iylle; = (G(, A), (2, X)) = {(YL*La — L*A, =La + 571 X), (2, A))
= (yL*La,z) — (L*\,z) — (La, ) + (y "I\ \)
= (\/yLz,\/yLz) — 2(Lz,\) + <ﬁA,%/\>
= IVaLe = A1 = 3 v L = AJl?
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Convergence cont’d

therefore
VY = yFlle = I(vLa™*t =AY — (yLa® = A)| = 0
recall primal dual DR (formulation of dual DR)
= argmin{f(z) + 3| Lo + 471242}

At — Prox. .« (2yLa*tt + 2F)

PRl = \RHL kel

therefore

e R e 2

= %”Rv(f*o—L*)R'yg*Zk - Zk” -0

already knew this, nice to get same result with different analysis
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Primal formulation of dual DR
got primal dual DR from DR on dual problem using identity:
ProX,(pro_r+)(2) = 2 +vL argﬂrgnin{f(x) + 2| Lz + 72|}
primal dual DR (use this formulation since easier later):
2" = argmin{ f(z) + %||Lx + 12" ||*}
B
AR — ProX., g (2yLa*tt + 2F)
R L R s
use Moreau’s identity on prox..:
proxy- () = 2 = yargmin{g(y) + 31y - S
then M\*t1_update can be written as

y* T = argmin{g(y) + Z|ly — v (2yLa™T! + M) |7}
Y

)\k+1 — 27ka+1 4 Zk? _ ryyk+1
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ADMM

e insert into primal dual DR

2" = argmin{ f(z) + || La + (A"
xr

k+1

—yLa®)|?}

y* T = argmin{g(y) + Z|ly — v~ " (2yLa"T + 2F)|°}

)
)\k-‘rl _ 2,7ka‘+1 + Zk: _ ,yyk-i-l
+1 _ )\k _ ’7L$k+1

e replace \* and remove \*-update

2 = argmin{ f(z) + (z* 7' + yLa*, Lz)

k+1

Yy = argmin{g(y) — (zk + ’nyk+17y> +

Yy
Zk+1 _ Zk 4 ,Y(ka+1 _ yk+1)

+ 3l Le =y %}

Ty — La® %}
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ADMM

o let pftt = 2k 4 Lokt

oM = argmin{f(x) + (u*, L) + J | La — y*[?}

:,:

Yyt = argmin{g(y) — (1", y) + Flly - La"T*}

SRl _ Lk i’y(kaH )
e the zF*t1-update (shifted one step) can be written as

prtt = Lt = pF — yLat + y(La® — yF)

o we get

xk:Jrl — a,rgmln{f(m) + <Mk’L,fE> + %HLw - yk”2}

y*T! = argmin{g(y) — (W* 11, y) + 2|y — LT}
Yy

Pt = gy (Lt — k)
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ADMM

k41

let 7"t = %, we get

2" = argmin{f(x) + (4", La) + F || L — g+ |*}

gF+? = argmin{g(y) — (t",y) + 3|y — La* 1%}
Yy

PFH gk oy (Dbt — g
change order of first two iterates (and present shifted g-update)
g = argmin{g(y) - (1, y) + 3lly — La*|*}
2" = argmin{ f(z) + (u*, La) + || L — g" " |*}
R i A(Lak+t — gy

dual DR is called the alternating direction method of multipliers
very similar to dual proximal gradient method
(only || - ||* term in first argmin that is different)
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Optimality conditions

e we know that ADMM converges to a fixed-point

e the following holds for fixed-points Z, 7, ji
T = argmin{ f(z) + (@, LT) + 3|17 - g}
g = argmin{g(y) — (m.9) + 39 — L[’}
p=p+~y(Lz—y)
e Fermat's rule and Lz =y give
0€df(@)+ Lk

0€dg(y) — i
0=Li—7

which are the optimality conditions
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Several g functions

assume we want to solve

minimize —|—ZgZ (yi)

subject to L;xz = yl for alli=1,...k

if f=0and all L; =1, then it is min, Zlegi(a:)

introduce

k
y=1:1, L=|:[, g(y)=zgi(yi)

Yk Ly,
then problem can be rewritten as

minimize f(z) + g(Lx)
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Apply ADMM

e assume that f =0, and L; = I for all ¢, then ADMM becomes

2" = argmin{(u*, Lz) + 2| Lz — y"||*}

k+1

y* ! = argmin{g(y) — (1", y) + L|ly — La**1|°}
Yy

P = Py (LT =M

o then first argmin becomes:

k
= %j{: - Mz

i=1
e second argmin becomes block separable and each y; is updated as
k+1

yitt = argmin{g; (vi) + (uf, vi) + 2lly; — x
Yi

k+1”2}

which is the prox
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Further properties of DR

e it can be shown that DR equivalent if applied to
minimize f(z) + g(x)
or dual
minimize f*(—p) + g™ (1)
e it can also be shown that DR equivalent if applied to
minimize f*(—L*p) + g*(u)
or (where (Lf) = infr,—, f(x))
minimize (Lf)(y) + g(y)

(so ADMM is obtained by applying DR on latter as well)
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Convergence

primal DR and dual DR (ADMM) are averaged iterations =

sublinear convergence

linear convergence in primal case if either R ; or R, contractive
e holds if f or g strongly convex and smooth

linear convergence if Ry averaged and R,, negatively averaged
e holds if f smooth and g strongly convex

linear convergence in dual case if R, (f+o_p«) or R4« contractive

e holds if f strongly convex and smooth and L surjective
e or if g strongly convex and smooth

linear convergence if R, (y-o1+) averaged and R, - neg. averaged
e holds if f strongly convex and g smooth
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Limitation

want to solve min,{f(x) + g(Lz)}
primal DR needs to solve in every iteration

Prox; (gory (2) = argmin{g(Lz) + -l — 2]}
which can be evaluated as
Prox. yor)(2) = z = 7L* arginin{g*(u) + 2L — 2}
dual DR (ADMM) needs to solve in every iteration
P10, 7-o( 1o (2) = argmin{ /" (~L*10) + &l — 2}
which can be evaluated as
ProX.,(peo(—r+))(2) = 2 + 7L arg;nin{f(x) + 2| L+~ 2%}

these might be expensive due to operator L
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Apply to monotone inclusion problem

e we know that x and y solves

minimize  f(z) + g(y)
subjectto Lz =y

if and only if
0€ Fa,p) + M(x,p)

where F(z,p) = (0f(x),09* (1)) and M (z, p) = (L*p, —Lx)
e that is, if and only if

0€df(x)+ L*u
0€dg*(n) — Lz

e F, M are monotone (M = —M*, i.e. skew-symmetric)
= can be solved using DR
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The algorithm

e the algorithm becomes

k k
V' = JyFZz

ub = T (20F — 2F)
2L = 2k L2 (uk — o)

e recall F(z,u) = (0f(x),09" (1)) and M (z, p) = (L*p, —La)
o let z = (z1,22) and v = (v1,va), the algorithm becomes

zk = proxvf(zf)
y* = prox,,(25)

oF = yr((2eF — 28,255 — o))

zf“ = 2F + 2a(vh — 2)
5 =2+ 20(vf — y")

e avoids having L in prox (but must compute resolvent of M)
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Linearized methods

another way to avoid proximal evaluations with compositions
recall that the primal-dual formulation of dual DR is:

0e {8f<w’““>+L*W1 [’VL*L ‘_ﬂ [“:i _gﬂ
Bg* (AF+1) — Lak+l —L  A7Ud| [ AR )
in short, this algorithm can be written as
A= (A4 G)7GLR

where A = F + M and

F(z,A) = (0f(2),09"(N),  M(z,A) = (LA, —Lx)
and

G(z,\) = (yL*Lx — L*\, =Lz + v~ '\)

it is the skewed resolvent algorithm for A = F' + M
= convergence in G-norm

e have already shown convergence for that specific G
e any positive definite G will guarantee convergence
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Replace metric matrix

e use metric G such that
G(z,\) = (yPx — L*\, —La +~y~ 1))

with P > L*L, then G positive definite

e or in matrix notation

[P -L
¢= {—L *y_lId}
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Selecting P

we select P > L*L to be diagonal

the optimality conditions for the algorithm become

0e Of (zF+1) + LAk H N T S [ P
(r“)g*()\k"'l) — Lkl —L ’y_lld Ao+l \F

and the algorithm becomes
e = argmin{f(x) + (L*A\*,2) + F o — 2*||3}
AL — ProX.,qs (2yLa* Tt — yLa® 4+ AF)

diagonal P does not increase complexity of argmin

separability of f can be exploited in prox computation!

|
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Quadratic example

assume we want to solve
minimize f(z) + g(Lx)

where f(z) = 327 Hz 4+ ¢"x and H positive semi-definite

update in linearized method is

2P = argmin{ f(z) + (L*\*, z) + I — 2|5

optimality condition for update:
0= Ha"* ¢ — LTpk + yP(2"! — 2F)

that is, we need to invert (H + P) to compute z*¥*!
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Quadratic problems

e assume that f(z) = 22T Hz + ¢qTz is convex

e linearized method becomes

. ka—&-l + q 4 L*)\k+1 ,YP _L* I‘k+1 _ .I‘k
0g" (W) — L+t ~L ] AR
let P=P — 7’1H, for some diagonal P 'yle + L*L, then
0 . Hl‘k+1 + q + L*/\k+1 ’VP _H _L* $k+1 _ .’L‘k
Ag* (\FH1) — Lak+! —L ATHIA| (AR — AR
then optimality conditions for z**!-update is
0= Ha" + q+ L*\F 4 yP(zF — o)
or
g =gk — AT P 4 Ha® 4 LFAF)
since P diagonal, very cheap iteration!

metric positive definite = convergence
33



Linearized method for inclusion problems

recall the optimality conditions for the linearized algorithm

0c Of (xF+1) + L \F+! P  —L* ] [zt — 2k
Dg* (AFFL) — Lak+! —L A7Ud] [ AL )\F

we can replace Of by A and 8g* by B~!

A$k+1 +L*)\k:+1 ,YP ¥ k+1 J)
0e 1Bl Bl _ —1 k+1 _ y\k
BTINeHL [kt L ~771d] [A A

we get proximal point algorithm for sum of monotone operators
F(x,\) = (Az, B~1)), M(z,\) = (L*\,—Lz)

convergence of same reason as before
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Three operator splitting method

recently a three operator splitting method was presented
it generalizes DR splitting and FB splitting

it solves problems of the form
0€ Ar+ Bz +Cx

where A and B are monotone operators and C' %—cocoercive
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Inclusion conditions

e 1z solves inclusion 0 € Az + Bz + Cx if and only if for v € (0, 00):
0€ (Id+~A)x — (Id = yB)x +yCx
0 e (Id+~A)z — Ryg(Id +vB)xz + vCxz
0€ (Id+~A)x — Rypz+~Cz, z € Id+vB)z
0€ Id+~A)x — Rypz+~Cx, z = J,pz
0€ (Id+~A)Jygz — Rypz+~CJypz, v = Jypz
(Ryp —7CJyB)z € Id+~vA)J gz, x = J,pz
Jya(Ryp —vCJy)z = Jypz, © = Jypz
(Rya(Ryp —vCJyB) —vCJ )z =2, x = Jypz
e the last step holds since
(Rya(Ryp —7CJyp) —7CJyB)
=2Jy4(Ryp —vCJyg) — (Ryp —7vCJyp) —vCJyp
=2J,8 — RyB
=25 —2J,5 +1d=1d

te o

¢
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Special cases

e condition:
(Rya(Ryp —vCJyp) —vClJyp)z = z, v = Jypz
e let B=0, then J,p = R,p = Id:

(Rya(Id = +CId) = yCId)z = 2, x =z
< (2J,4(Id —~C1d) — (Id — yC1Id) — yCId)x = =
& 2Jy4(Id —4Cld)z = 22

this is optimality condition for Forward-Backward splitting
o let C'=0:

RyaR,pz=2z, v=Jypz

this is optimality condition for Douglas-Rachford splitting
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Operator properties

let v € (0, %)
it can be shown that
T = %Id + %(R'yA(R'yB — ’VCJWB) — ’}/CJ,YB)
is ﬁ—averaged
the everagedness factor 47275 €(3,1)
therefore, iterating z*+1 = T'2* converges sublinearly

stronger convergence can be obtained under various assumptions
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Comments

e can be applied to solve convex optimization problems of the form
minimize f(z) + g(z) + h(z)

where one function is S-smooth

e can also be applied to solve dual of

minimize  f(x) + g(y) + h(2)
subject to Lyx+ Loy + L3z =0

which is
minimize f*(—Lip) + g" (~ L) + h*(~Lip)

if f strongly convex = f* o —L7 smooth
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