Homework assignment 4

Exercises 1 and 2 are Hand-in exercises.

- 1. Compute the proximal operator to the following functions f. For each example do the following:
 - (i) Indicate if the proximal operator is separable.
 - (ii) Provide a rough estimate (if possible) of the computational cost of evaluating the proximal operator (or point out the most costly operation).
 - (iii) Consider computing the prox of $f \circ L$ where L is an arbitrary linear operator. Estimate if the computational cost of computing this prox is significantly increased compared to computing the prox of f.
 - (iv) Decide if the function satisfies the properties needed to guarantee convergence using a forward-step (gradient-step) of its gradient. That is, decide if f differentiable with ∇f cocoercive (or equivalently, decide if f smooth).
 - (v) If a forward-step in (iv) is OK, compare the computational cost of the forward-step and the prox-step (with and without composition).
 - **a.** $f(x) = ||x||_1$.
 - **b.** $f(x) = ||x||_0$ (counts the number of nonzero elements (nonconvex)).
 - **c.** $f(x) = \frac{1}{2}x^T H x$ where *H* is full symmetric and positive semi-definite.
 - **d.** f(x) = ||x||.
 - **e.** $f(x) = \frac{1}{2} ||x||^2$.
 - **f.** $f(x) = ||x||_1 + \frac{1}{2} ||x||^2$.
 - **g.** $f(x) = \iota_C(x)$ where $C \neq \emptyset$ is a general closed and convex set.
 - **h.** $f(x) = \iota_V(x)$ where $V = \{x \mid Lx = b\} \neq \emptyset$.
 - i. $f(x) = \iota_B(x)$ where $B = \{x \mid l \le x \le u\} \ne \emptyset$.
- 2. Moreau's identity and generalizations.
 - **a.** Assume that A is a maximal monotone operator and that $\gamma \in (0, \infty)$. Prove the generalized Moreau identity:

$$J_{\gamma A} + \gamma J_{\gamma^{-1}A^{-1}} \circ (\gamma^{-1} \mathrm{Id}) = \mathrm{Id}.$$

b. Let *f* be proper closed and convex and *L* be a linear operator and let $\gamma \in (0, \infty)$. Further assume that $f \circ L$ is proper. Show that if

$$s^* \in \operatorname{Argmin}_{s} \{g^*(s) + \frac{\gamma}{2} \|L^*s - \gamma^{-1}z\|^2 \}$$

exists, then

$$\operatorname{prox}_{\gamma(f \circ L)}(z) = z - \gamma L^* s^*$$

- **3.** Assume that $\beta \in (0, 1)$ and that T is $\frac{1}{\beta}$ -cocoercive. Show that $T + (1 \beta)$ Id is $\frac{\beta}{2}$ -averaged.
- 4. Suppose that *f* is proper closed and convex.
 - **a.** Assume that f is σ -strongly convex with $\sigma \in (0, \infty)$. Then the reflected resolvent R_f is α -negatively averaged. Provide a value for α .
 - **b.** Assume that f is β -smooth with $\beta \in (0, \infty)$. Then the reflected resolvent R_f is α -averaged. Provide a value for α .
- 5. Consider the problem

minimize
$$\frac{1}{2} \|Ax - b\|^2 + \lambda \|Dx\|_1$$
 (P)

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $D \in \mathbb{R}^{p \times n}$, $x \in \mathbb{R}^n$, and $\lambda \in (0, \infty)$. Assume that A and D always have full rank. We will consider two different dual problems for (P). The primal problem can be written on the following general form

minimize f(x) + g(Lx).

Let $f(x) = \frac{1}{2} ||Ax - b||^2$ and $g_1(x) = \lambda ||Dx||_1$ to get the first dual problem

minimize
$$f^*(-\mu) + g_1^*(\mu)$$
. (D1)

Let $f(x) = \frac{1}{2} ||Ax - b||^2$, $g_2(y) = \lambda ||y||_1$, and L = D to get the second dual problem

minimize
$$f^*(-L^*\mu) + g_2^*(\mu)$$
. (D2)

Consider the following cases:

- (i) $m \ge n$ and D = I
- (ii) $m \ge n$ and p < n and D general structure
- (iii) $m \ge n$ and $p \ge n$ and D general structure
- (iv) m < n and D = I
- (v) m < n and p < n and D general structure
- (vi) m < n and $p \ge n$ and D general structure
- **a.** For each of these cases, motivate if the problem can be solved by forward-backward splitting applied to (P), (D1), and/or (D2). Also provide bounds on γ in each case and algorithm for which the algorithm is guaranteed to converge.
- **b.** For each of these cases, motivate which forward-backward method that gets cheapest iterations. That is, if forward-backward splitting applied to (P), (D1), or (D2) (if applicable) gets the cheapest iteration cost.
- **c.** For each problem and (feasible) forward-backward splitting method (that is FB applied to (P), (D1), (D2)), motivate if the convergence is linear or sublinear.
- **d.** Implement the algorithms using random A and D (where applicable).