Homework assignment 4

Exercises 1 and 2 are Hand-in exercises.

1.

Compute the proximal operator to the following functions f. For each
example do the following:

(i) Indicate if the proximal operator is separable.

(ii) Provide a rough estimate (if possible) of the computational cost
of evaluating the proximal operator (or point out the most costly
operation).

(iii)) Consider computing the prox of f o L where L is an arbitrary
linear operator. Estimate if the computational cost of computing
this prox is significantly increased compared to computing the
prox of f.

(iv) Decide if the function satisfies the properties needed to guaran-
tee convergence using a forward-step (gradient-step) of its gra-
dient. That is, decide if f differentiable with V f cocoercive (or
equivalently, decide if / smooth).

(v) If a forward-step in (iv) is OK, compare the computational cost
of the forward-step and the prox-step (with and without compo-
sition).
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f(x) = ||x|lo (counts the number of nonzero elements (nonconvex)).
f(x) = %xTH x where H is full symmetric and positive semi-definite.
f(x) = ]l

fx) = gllall®.

£(x) = el + Ll

f(x) = 1¢(x) where C # @ is a general closed and convex set.

f(x) =1y(x) where V ={x | Lx = b} # &.

f(x) =1p(x) where B={x | I <x<u} #.

Moreau’s identity and generalizations.

. Assume that A is a maximal monotone operator and that y € (0,0).

Prove the generalized Moreau identity:

Jya+ 7,141 0 (y'1d) = Id.

. Let f be proper closed and convex and L be a linear operator and let

¥ € (0,00). Further assume that f o L is proper. Show that if

s* € Argmin{g*(s) + %|IL*s —y 2|}
S
exists, then

Prox, (for)(2) =z —yL"s"



Assume that 8 € (0,1) and that T is %-cocoercive. Show that T'+ (1—
B)Id is g—averaged.

Suppose that f is proper closed and convex.

. Assume that f is o-strongly convex with o € (0, c0). Then the reflect-
ed resolvent R is a-negatively averaged. Provide a value for «.

. Assume that f is f-smooth with 8 € (0,00). Then the reflected resol-
vent R is a-averaged. Provide a value for .

Consider the problem
minimize 1[|Ax — b|* + A||Dx||; (P)

where A € R™" b € R, D € R x € R*, and 1 € (0,00).
Assume that A and D always have full rank. We will consider two
different dual problems for (P). The primal problem can be written
on the following general form

minimize f(x) + g(Lx).

Let f(x) = %||Ax — b|®> and g1(x) = A||Dx|1 to get the first dual
problem

minimize f*(—u) + gj(u). (D1)

Let f(x) = ||Ax — b||%, ga(y) = A||y|l1, and L = D to get the second
dual problem

minimize f*(—L*u) + g5(u). (D2)

Consider the following cases:

(i) m>nand D =1

(i) m > n and p < n and D general structure
(iii) m > n and p > n and D general structure
(iv) m<nand D =1

(v) m <n and p < n and D general structure
(vi) m < n and p > n and D general structure

. For each of these cases, motivate if the problem can be solved by
forward-backward splitting applied to (P), (D1), and/or (D2). Also
provide bounds on ¥ in each case and algorithm for which the algo-
rithm is guaranteed to converge.

. For each of these cases, motivate which forward-backward method
that gets cheapest iterations. That is, if forward-backward splitting
applied to (P), (D1), or (D2) (if applicable) gets the cheapest iteration
cost.

. For each problem and (feasible) forward-backward splitting method
(that is FB applied to (P), (D1), (D2)), motivate if the convergence is
linear or sublinear.

. Implement the algorithms using random A and D (where applicable).



