Homework assignment 3

Exercises 3, 4, and 5 are Hand-in exercises.

- **1.** Assume that $T : \mathbb{R}^n \to \mathbb{R}^n$ is $\frac{1}{\beta}$ -cocoercive and that $\gamma \in (0, \frac{2}{\beta})$.
 - **a.** Motivate graphically that $\operatorname{Id} \gamma T$ is $\frac{\gamma \beta}{2}$ -averaged.
 - **b.** Show that $\operatorname{Id} \gamma T$ is $\frac{\gamma \beta}{2}$ -averaged.
- **2.** Assume that $T : \mathbb{R}^n \to \mathbb{R}^n$ is $\frac{1}{\beta}$ -cocoercive with $\beta > 0$.
 - **a.** Using graphical arguments, estimate a tight Lipschitz constant to $2T \beta \text{Id}$
 - b. Prove that the estimated Lipschitz constant holds.
 - c. Show that the estimated Lipschitz constant is tight. That is, provide a $\frac{1}{\beta}$ -cocoercive operator such that the Lipschitz inequality holds with equality.
- **3.** Assume that T is α -averaged with $\alpha \in (0, \frac{1}{2})$. Let R = 2T Id.
 - **a.** Using graphical arguments, estimate an averagedness parameter for *R*.
 - **b.** Show that the averagedness parameter provided above holds.
- **4.** Assume that $\alpha \in (0,1)$ and recall that an operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is α -averaged if $T = (1-\alpha) \operatorname{Id} + \alpha R$ for some nonexpansive operator R. Show that the following are equivalent
 - (i) T is α -averaged
 - (ii) $(1 \alpha^{-1})$ Id $+ \alpha^{-1}T$ is nonexpansive
 - (iii) the following holds for all $x, y \in \mathbb{R}^n$

$$||Tx - Ty||^2 \le ||x - y||^2 - \frac{1 - \alpha}{\alpha} ||(\mathrm{Id} - T)x - (\mathrm{Id} - T)y||^2$$

Hint: You may use that for any $u, v \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$:

$$\|\lambda u + (1-\lambda)v\|^{2} + \lambda(1-\lambda)\|u-v\|^{2} = \lambda\|u\|^{2} + (1-\lambda)\|v\|^{2}.$$

- 5. Assume that T is $\frac{1}{\beta}$ -cocoercive with $\beta \in (0,1)$ and let R = 2T Id. Then R is α -negatively averaged.
 - **a.** Using graphical arguments, estimate α .
 - **b.** Show that *R* is negatively averaged with the above estimate.
- **6.** Assume that T is β -negatively averaged for $\beta \in (0, 1)$. Let $S = (1 \alpha)$ Id $+ \alpha T$ with $\alpha \in (0, 1)$. Show that S is contractive with the above estimated contraction factor.

- 7. Suppose that $T + \alpha \operatorname{Id}$ is $\frac{1}{\alpha + \beta}$ -cocoercive with $\alpha + \beta > 0$. Then T is Lipschitz continuous.
 - **a.** Using graphical arguments, estimate a Lipschitz constant to T.
 - **b.** Show that the above provided Lipschitz constant holds.
- 8. Assume that f is proper closed and σ -strongly convex and let $h = f + \frac{1}{2} \| \cdot \|^2$. Provide a smoothness parameter to h^* and cocoercivity parameter to ∇h^* .
- 9. Assume that f is proper closed σ -strongly convex and β -smooth and let $h = f + \frac{1}{2} \| \cdot \|^2$.
 - **a.** Provide a smoothness parameter to $h^* \frac{1}{2(1+\beta)} \| \cdot \|^2$.
 - **b.** For $\beta > \sigma$, provide a cocoercivity parameter of $\nabla h^* \frac{1}{1+\beta}$ Id.
 - **c.** For $\beta = \sigma$, provide a Lipschitz constant to $\nabla h^* \frac{1}{1+\beta}$ Id.