Homework assignment 1

Exercises 2, 7, and 8 are Hand-in exercises.

1.

Let L : R® — R™ be a linear operator. Show that all points x € R”
in the affine set V = {x € R" | Lx = 0} satisfies x € ri V. That is,
show that V =ri V.

Let L : R® — R™ be a nontrivial linear operator, i.e., Lx is not zero
for all x € R". Further, let V = {x € R" | Lx = 0}.

. Compute the normal cone to the affine set V at x = 0. Involve the

adjoint operator L* in the expression. Note: The adjoint operator to
the linear operator L : R” — R™ is defined as the unique operator
L* : R™ — R” that satisfies

(Lx,y) = (x,L"y)

for all x € R" and all y € R™.

. Compute the normal cone operator to V for any x € R"

. Compute the normal cone operator to V, := {x € R" | Lx = b} (as-

sume Vj, # &) for any x € R".

Construct and example of two nonempty closed convex sets, where the
set sum is not closed.

The strictly separating hyperplane theorem assumes that the two sets
S and R are closed and convex, and that one of them is compact.
Provide an example where S is closed convex and bounded, and R
is convex and bounded for which no strictly separating hyperplane
exists.

Show that dom (g o L) = L~!(dom g).

Assume that C = {x | g(x) < 0} where g : R" — R is convex. Slater’s
condition is that there exists & such that g(x) < 0.

a. Show that this is implies that int C # &.

. Construct a function g such that no % exists such that g(x) < 0, but

where C = {x | g(x) < 0} has nonempty interior.

Suppose that g; : R* — R for i = 1,...,%k are convex (and finite-
valued). Let g(x) = (g1(x),...,9x(x)) : R” — R* and consider the set
C = {x | g(x) < 0}. Further, assume that there exists £ € R"” such
that g(x) < 0, (vector-wise comparison). Show that the normal cone
to C for any x € R” can be written as

k
Ne(x) = ;#iagi(x) ifg(x) <0

%) else



10.

11.

with the additional constraints that u;g;(x) = 0 and x; > 0 for all
i=1,...,k

Hint: The assumption implies that int C; = {x | g;(x) < 0}, that
bd C; = {x | gi(x) = 0} (which you can use without proving it).

Let f : R® — R and suppose that f is proper closed and convex and
that ri dom f # . Further suppose, if nothing else is stated, that f
is o-strongly convex with o € (0,0).

. Show that the nonempty level-sets of f are bounded.

Hint: At any x € ri dom f there exists a subgradient to f — & - ||
Use this to show that f(y) — oo as ||y|| — oo.

. Show that the infimum of f : R” — R is attained, i.e., show that

argmin, f(x) exists.

. Show by a counter-example that argmin, f(x) need not exist if f is

merely strictly convex.

Assume that f : R” — R is finite-valued and convex. Show that the
directional derivative

d > f/(x.d) :=lim fla+ ti) — f(x)

is convex in d for fixed x.

Compute subdifferentials of the following functions.

. Assume that C is a nonempty set. Show that di¢(x) = N¢(x), where

0 ifxe C
te(x) =

00 else

. Compute the subdifferential of f(x) = %|lx|.

. Compute the subdifferential of f(x) = ||x|| = />; x2.
. Compute the subdifferential of f(x) = ||x||1 = >_; |xi].
. Compute the subdifferential of f(x) = (c, x).

In relation to the result that a closed function is convex if and only if
dom £ is convex and dom Of D ri dom f, provide counter-examples if
some of the assumptions do not hold.

. Construct a closed nonconvex function f with dom 0f D ri dom f but

dom f is not convex.

. Construct a closed nonconvex function f with dom df C ri dom f

with dom f convex.

. Construct a nonconvex (not closed) function f with dom d0f D ri dom f

and dom f convex.



