
Homework3 (Linear Algebra)

We have data values:

X 1 1.5 2 2.2 2.7 3.6 4.1 5.6 5.8 6

Y 15 43 125 185 450 1700 3137 13800 16300 19000

we want to find the interpolation polynomial of order 5, such that the 
summation of coefficients is 15.

Solve the constrained least squares problem by one of the explained methods in 
“Numerical Methods in Multibody Dynamics, E. Eich-Soellner, C. Führer”. 
(Those pages of the book have been attached)
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If the condition is not much higher than the condition ofM , the described method

was successful.

The condition estimator is usually used in conjunction with a solver for linear

equations, which is used here to compute
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Example 2.2.1 To summarize this procedure, we will apply it to the constrained

truck example (Ex. 1.3.2). This results in the following MATLAB statements

[Q,R,P]=qr(G); % QR-Decomposition with Pivoting

R1=R(1:2,1:2); % Splitting up R into a triangular part R1

S=R(1:2,3:9); % and a rectangular S part

V=P*[-R1nS;eye(7)]; %

%

% transformation to state-space form

%

Mtilde=V'*M*V; Ktilde=V'*K*V; Dtilde=V'*D*V;

A=[zeros(7),eye(7);-MtildenKtilde,-MtildenDtilde];

As result for the constrained truck, linearized around its nominal position we obtain
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Thus, this procedure takes p

1

; p

2

; p

4

; p

5

; p

6

; p

8

; p

9

as state variables and p
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dependent ones. This can be veri�ed by checking V or P .

Alternative methods can be found in Sec. 2.3.2.

2.3 Constrained Least Squares Problems

We will frequently encounter in the sequel constrained least squares problems of

the form

kFx� ak

2

2

= min

x

(2.3.1a)

Gx� b = 0 (2.3.1b)
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with an n

x

� n

x

regular matrix F and a full rank n

�

� n

x

constraint matrix G.

Typically, these systems occur when discretizing the linearized equations of motion

of a constrained multibody system. In the nonlinear case, they occur inside an

iteration process, cf. Sec. 5.3.

By introducing Lagrange multipliers �, the problem reads equivalently
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Gx� b = 0; (2.3.2b)

or in matrix notation
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The solution of this equation can be expressed in two di�erent ways (see [GMW81]):

Range Space Formulation

From the �rst equation we obtain
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Null Space Formulation

De�ning V as a matrix spanning the null space of G and x

p

as a particular solution

of the second equation of (2.3.3), we get
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:
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and �nally we obtain
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x
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can be computed using the Moore{Penrose pseudo-inverse
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Alternatively, a weighted generalized inverse G
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may be used instead of the Moore{

Penrose pseudo-inverse:
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with M being an invertible n
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� n

x

matrix.

The particular steps in a numerical computation of the solution of a constrained

least squares problem will be discussed in Sec. 2.3.2.

Both approaches can be related to each other by �rst setting b = 0 and equating

(2.3.4a) with (2.3.5):
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(2.3.9)

This relation will be used later.

On the other hand, by setting a = 0 we get
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2.3.1 Pseudo-Inverses

In the special case of an underdetermined linear system we may look for the min-

imum norm least squares solution of this system. With F = I , a = 0 we obtain

from Eq. (2.3.4)
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