
Julia for Scientific Programming
Seminar 1: Basics 1

Kristian Soltesz

Dept. of Automatic Control
Lund University

Kristian Soltesz Julia for Scientific Programming



Practical Stuff

Homework (getting started, finding documentation)
Course web page (navigate from main page)
Forum for questions/discussions at Piazza (e-mail sent out)
All slides on course home page (and git repo)

Kristian Soltesz Julia for Scientific Programming



Today’s Goal

...is to figure out:

Where (among languages) does Julia belong?
How do we use variables
How to use numerics
How to define and use functions
Learn how to alter control flow

This seminar will roughly follow the chapters of
docs.julialang.org until Types.

We will also talk a bit about how to structure the remainder of
the course.

Kristian Soltesz Julia for Scientific Programming

docs.julialang.org


What is Julia?

A new (2012 release) language for scientific computing
Open source and free (MIT) license
Just In Time (JIT) compilation to native machine code
allows for C-speed execution
Small core, most functionality implemented in the language
itself
Multi-paradigm: procedural / functional / object-oriented /
concurrent
Multi-dispatch allows dynamic binding at runtime

Kristian Soltesz Julia for Scientific Programming



Executing Code

Just like Matlab and Python, there are two execution modes:

interactive (prompt / read-eval-print loop)
non-interactive mode

Kristian Soltesz Julia for Scientific Programming



Variables

Variable can be (almost) any unicode sequence. For instance
α= 5 is a valid variable declaration. (If you don’t know the
unicode for α, julia accepts the LATEX code followed by a tab.

Conventions:

Variable names start lower-case
Type names start uppercase
camelCasing is used in favor of under_score
Functions that modify their input in-place have names
ending in !

Type whos() to see defined variables and typeof(myVariable)
to get type info. The ans variable works like in Matlab.

Kristian Soltesz Julia for Scientific Programming



Primitive Numeric Types

Normal integers: IntX where X is either of 8,16,32,64,128
and corresponding (unsigned) UintX.
Boolean: Bool internally represented as 8 bit int with
values 0 or 1.
Character: Char internally represented as 32 bit int.
Floats: Float16 (half), Float32 (single) and Float64
(double).

The type is decided at construction, and type casting is implicit.
Try for instance:

julia> a=1;b=1.;c=a*b; typeof(c)

Explicit casting is possible: convert(Int8,3.) Unlike Matlab,
overflow is cyclic. Try adding 1 to intmax in Matlab, and to
typemin(Int64) in Julia.

Kristian Soltesz Julia for Scientific Programming



Composite Numeric Types

There is a rational type associated with each integer type,
constructed as 7//8.
Arbitrary precision arithmetics are available through the
BigInt and BigFloat types (constructors with same
names).
Complex numbers can be constructed like 1+3im or
complex(1,3). Note that no * is required between 3 and
im.

Casting to complex numbers is not implicit. sqrt(-1) throws an
error.

Kristian Soltesz Julia for Scientific Programming



Almost like Matlab

Operation on numbers resembles Matlab, with some
improvements:

Several operations can be combined with assignment:
a+=3 instead of a=a+3.
Coefficients can be more compactly expressed: a^2b
instead of a^(3*b).i
The float variable x=1. prints as 1.0, not 1.
Chaining comparisons is possible (like in Python). Try
x=1.5; 1<x<2

If the type is associated with a zero or one, these are
explicitly available: one(Int32), zero(1.)

Kristian Soltesz Julia for Scientific Programming



Strings

If you plan to use Julia to process data from files or streams,
read the chapter on Strings. We will skip it in favor of...

Kristian Soltesz Julia for Scientific Programming



Functions 101

Vanilla function definition:

function f(x)
x+1

end

Calling the function: f(3)

Note how output is not defined at the function declaration
(more on this later).
Parenthesis required even for functions without arguments,
such as eps().
Last evaluated expression in function body is returned.
Julia also implements the return keyword, just like Matlab.

Kristian Soltesz Julia for Scientific Programming



More on Functions

Operators are functions. Try +(1,3,4)

Anonymous functions are created using ->. Example of
use: map(x->x^2,[1 2 3]) produces [1 4 9]. Mapping
functions is familiar for Python users as a powerful tool.
Functions return a single object. However, it can be a tuple
with the comma as constructor:
function foo(a,b)

a+b, a-b
end

There is built-in support for destructuring tuples, making it
look like the function returns several objects, for example
try: x,y=foo(1,1)

Named functions can be defined in-line without the
function keyword: square(x)=x^2.

Kristian Soltesz Julia for Scientific Programming



Passing Arguments

Variable number of input arguments (vararg) functions can
be defined using ellipsis:
f(first,rest...)=(first,rest). The rest list of input
argument is accessible inside the function as a single tuple
rest..
The ellipsis can also be used to splice an iterable collection
into a list: used in an argument:
x=(2,7,3);
max(x...)
It is possible to define functions with optional arguments:
grow(x,y=2)=x*y can be called either by grow(3) or
grow(3,4).
There are also keyword (named) arguments, following
semicolon in declaration: function f(x;y=0) can be
invoked f(3,y=4).

Kristian Soltesz Julia for Scientific Programming



Brief Note on Functional Programming

Functions are first class citizens in Julia. They can be passed
around like any value:

f(x,y)=x+y
g(x)=f(x,3)

As we have seen, there is also support for anonymous (aka
lambda) functions. These two facts make it possible to use
Julia as a functional lanaguage. Aha experience for those who
know Haskell or Lisp.

Kristian Soltesz Julia for Scientific Programming



Control Flow 101

Very similar to Matlab with familiar keywords: if, else, elseif,
for, while, continue, throw error, warn (warning in Matlab)
try, catch, end.

Short circuit "lazy" evaluation as in Matlab and C.

Some new friends:

begin-end. Lumps several expressions into one. However,
no scoping.
finally makes code in block after finally keyword run
regardless if the block exits clean or through exception.

Kristian Soltesz Julia for Scientific Programming



Note on Light Threading

Julia provides another type of control flow control through tasks
(aka light treads). Tasks can take on states runnable, waiting,
queued, done, failed. They are a convenient tool for dealing
with external events, such as I/O. Read more in the
documentation!

Kristian Soltesz Julia for Scientific Programming



Practical

Homework 1. Go to projecteuler.net, select 1-3
problems and solve by coding in Julia.
Next meeting. Suggested Friday August 28. Someone
volunteering to go though methods, constructors,
conversions, modules?

Kristian Soltesz Julia for Scientific Programming

projecteuler.net

