Game Theory 2014

Extra Lecture 1 (BoB)

e Differential games

e Tools from optimal control

e Dynamic programming

e Hamilton-Jacobi-Bellman-lsaacs’ equation

e Zerosum linear quadratic games and H,, control

Baser/Qlsder, pp. 233-246, 265-288, 310-333, 342-350



To understand

e Definition of difference/differential games

e Optimal Control

e Dynamic programming and HJBI equation

e Open-loop and feedback Nash Equilibria

Material

e Copies from Baser/Olsder



Difference Games

State equation

Tpi1 = f(Tp,up,ug, ..., uy), x1 given
u; determined by player 7
Observations 3. = hi(xy), i=1,...,N

Information structure, for each player a subset 7., of

1 1. .. N N.. 1 1 . .. N N
T T VA Y T A 1 Y 1 AP A AP

Goal: Player ¢ wants to minimize some functional, L;, of x and u
given his available information.

Solution concepts: As before, Nash, Stackelberg, etc



Differential Games

d .
gx(t) = f(x(t),ur(t), us(t),...,un(t)), z(to) given

Goal: to minimize
L' = / gz, ut,. . u) dt
0

T either fixed, or given by an implicit equation

T = mtin{t; [(z(t)) < 0}



Example, Robust Control H., control
Assume u', u? and y are related via

r = Ax -+ Blul + BQUQ
— 01517
Yy = CQSC + DUQ
Typical H, question: Is [ z2(t) + ui(t)dt < ~* [ uz(t)dt?
Differential game between

controller, uy(t) function of y([0,])
disturbance, us(t) function of x([0,¢]) and wuy([0,¢])

Performance criterium

min max/ (2% +u® — y*us)dt
0

ul u2



Robust/ H ., Control

1

The interpretation is that u! is the control signal and u? is a worst-

case disturbance signal.

Introduce the Ly (or energy) norm of the signal w

fulle = ( [ ol ar) "

The H,, norm of a linear system G(s) is defined by

HGHoo:supHGwH

w0 | |W|]




Robustness

The H,, norm measures the largest amplification of energy by the
system.

Minimization of the norm is clearly interesting if w is a disturbance
signal. Another motivation is given by the so called small-gain
theorem

Theorem A closed loop system is stable for all perturbations A
with norm ||Al| < v if and only if ||Gk||ee < 1/




H_. control

|Gkl <7 &
3K 2P = ?|wl]* < 0 <
min max(||z[]* — v*|w[]?) <0
This is exactly (the upper value of) an affine quadratic game

The relation between H,, control and game theory was noted
rather late (end of 80s).

For details see Section 6.6



Pursuit Evasion Games



Tools from One-Person Optimization

Dynamic programming
The (maximum) minimum principle

Baser/Olsder Ch 5.5
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Dynamic Programming, discrete time

Thrr = felxp,ug), up € Uy
K

L(u) = ng(xk—l—laukaxk)
k=1

fr, gr, Ug, K, 1 given.
Want uy = v (k) that minimizes L

|dea: Generalize the problem; Calculate the value function

K
Vik,x) = %milfle Z 9i(Tit1, Ui, Tg)
R

for all initial conditions z, = .
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Principle of Optimality

An optimal control sequence uq, ..., ux should be sequentially
optimal. The only coupling between the optimization problems on
time horizons [1,k — 1] and |k, K] is via the state x;.

This leads to

V(k,z) = min [gp(fe(x, ur), ug, x) + V(k+ 1, fe(z, ur))]

up €Uy

with the final condition V (K, x) = min gx(Tx11, Uk, Tk ).
UK

12



Example — Affine quadratic problems

Tpr1 = Apxr + Brug + ¢
| K
k=1

has the solution

1
Vik,z) = §$/Skllj‘ + 2's + q

UZ: — —PkSk+1Ak$k — Pk(5k+1 - SkHCk)

Formulas for Py, S, s, are given on p.234-5
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Dynamic Programming, continuous-time

The same reasoning leads to a PDE equation called the Hamilton-
Jacobi-Bellman (HJB) equation

z(t) = fla(t) u(t))
u(t) = y(z(t)

L) = / o (0), u(t)dt + g(T. 2(T)

The final time 1" can be either fixed known, or given implicitly by

T =min{t : l(z(t)) =0}

t>0
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HJB equation

V(t,z) = min ]}/t g(z(s),u(s))ds + q(T,z(T))

{u(s),s€[t, T

V(T,z)=q(T,x) along [(x) =0

Principle of optimality shows that if V is C! then

oV(tx) . oV (t,x)
ot B uelU ox

fz,u) + g(x,u)

(+ final condition when t = T)
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Theorem of Sufficiency

Theorem 5.3 p 237 If a C! function V can be found that satisfies
the HJB equation and boundary conditions above then it generates

the optimal strategy u* through the pointwise optimization problem
defined by the right hand side.

Proof see p. 237

Example: Affine-quadratic problems has a quadratic function
V(t,z) = 32'S(t)x + K (t)x + m(t), see p.238-9
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The Minimum Principle

Introduce the costate vector p'(t) = OV (t,2*(t))/0x where z*

denotes the optimal trajectory corresponding to u*, i.e. *(t) =
f(x*(t),u*(t)). Also define (the Hamiltonian)

H(t,p,x,u) = g(x,u) + p'(t)f(z,u)

Theorem 5.4
0q(T(z*), x*
p(T) = a( (;)’x) along [(T,x) =0
T
y OH (t,p,x*, u*)
p(t) = 5
w* = arg min, .y H(t,p, 2", u)

See also the discrete-time counterpart Theorem 5.5
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N person difference games

How does this translate to difference games with N > 1 players?

L1 = fk(xkaullcaau;cv)
K
Jwh . u) = Zg,i(:ckﬂ,ui,...,u,iv,xk)
k=1

The control laws u; = v** constitute a Nash equilibrium if
J'(v) < Ty m)) Vi
Open-loop information: w% is an open-loop function of k&

Closed-loop information: u%(xy) is allowed to be a function of xy.
Hence changing u* will result in changes in v/
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Open Loop Dynamic Games

See Section 6.2.1

ldea: Player i solves a one-player problem. His choice u* will not
influence the other u’, so these can be treated as given functions of
time.

Then the results from the N =1 apply directly
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Open Loop Theorems

Theorem 6.1 If u* = ~* provides an open-loop Nash equilibrium,
then there exists a sequence of costate vectors p* such that

x/t—l—l — fk(x;;UZ)
Vi = arg min Hy(pp, {7 uk ks )
ul

i if’ A 0 i / 1 iz /
Pr = Oz, k | Prk+1 (9xk+1gk 8xkgk

where H* = ¢* + p* f. For details see p. 268

The affine case results in coupled Riccati equations. The special
zero-sum case for N = 2 is given in Theorem 6.3, and 6.4. Only
one Riccati equation must be solved. The condition for existence of
Nash equilibrium has the form I — B2 S, B2 > 0.
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Feedback Solutions

Theorem 6.6 The set of strategies v* provides a feedback Nash
equilibrium if and only if there exists functions V*(k, z) such that

Vi(k,z) = arg min[g;(—i*,uy) + V*(k + 1, f,ﬁ*(x, )]

uj,
= gi(=ix, )+ Vik + 1, fiF(2,9))

where f,ﬁ*(x,u};) = fe(z, {77 (2), ui.})
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Feedback Solutions, Zero-sum case N = 2

See Corollary 6.2 p. 282 The set of strategies v'*, v** provides a
feedback saddle-point solution if and only if there exists functions
V(k,x) such that for all &

V(k, )
U Yk

= mgxmiln gi (i (e, ug, ug), uy, ug, @) + V(k + 1, fi(z, ukzvuk)
Up  Up

= gk (fe(@, 75 7)Y (2), 730 (@), 1) + V(k+ 1, folz, 3" (2),7:7 ()
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Differential Games Open-loop Nash Equilibria

Want to present counterparts for continuous time.

Existence of smooth cost function V' is more problematic.
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Open-loop Nash Equilibria

Theorem 6.11 (Some smoothness assumptions) If u} = " (t, z)
provides an open-loop Nash equilibrium (with corresponding x*)
then there exist N costate functions p’(t) such that

x*(t) — f(x*(t),uli"(t),...,uN*(t))' |
Vo= argeréliinﬂz(pz(t),x*(t),{u_”»uz})
pr(t) = %Hi(pi(t),x*,u*(t))

51 = ()

where H'(p', z,u) = ¢'(2,u) + p* f(z, ).
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The Affine-Quadratic Case

flz,u) = Atz +) Bt +c(t)
1

g'(z,u) = §x’Qi(t)x+Zuj/Rijuj
() = oo(T)Qa(T)

with @ > 0,Q% > 0, R" > 0.
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The Affine-Quadratic Case

Theorem 6.12+4-p.316 There is an open-loop Nash equilibrium
solution to the affine-quadratic game for any T" € [0, T%] if and only
if the following coupled matrix Riccati differential equations have
solutions for any T € [0, T¥]

M+ MA+AM +Q — My BRI(t)'B M =0
J

M(T) = Q]

The NE is given by u' = —R%(t)"'BY[M'z*(t) + m’] where the
feedforward signal m' is given by (6.51)
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N = 2 Zero-Sum Case

P1 minimizes, P2 maximizes.

I : : 1
L(u',u?) = 5/ 7'Qr +utu' — vt u dt + §x’(T)Qfx(T)
0

with () > 0, QfZO.

Assume there exists a unique bounded symmetric solution S(-) to
the matrix equation

S+ AS+SA+Q+SB?*B*S=0, S(T)=Q;

on the interval [0, T].
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Then there exists a solution to
M+ AM+MA+Q— M(B'NY — N?B*YM = 0; M(T) = Q;
and the game admits a unique open-loop saddle-point given by

Y (t,w0) = =B (1) [M (D)2 (t) + m(?)]
V(8 20) = B (1) [M(£)2"(t) + m(t)
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Closed-loop Feedback Nash Equilibria

Will only give the result for N = 2 and zero-sum situation

Corollary 6.6, p326 A pair of strategies {+*} provides a feedback
saddle-point solution if there exists a function V' satisfying the PDE

ov(t,xz) OV (t,x) 1,2 1oy
e i T f(x’u’u)+g(x’u’u)_
p— maxmlﬂ 8V6(t7x)f(x7u1,u2) _|_ g(x7u17u2)
u? oyl X
oV (t,x)

= A fx, v, %) + gz, v, )

The value of the game is V (0, z)

This is the famous Hamilton-Jacobi-Bellman-Isaacs' equation
obtained by Isaacs in 1950s.
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N = 2, Zero-sum Affine Case

it = Az + B'u'+ B%u® +¢

1 [t : :
L = 5/ 2 Qr + ut ul — vt udt
0

Theorem 6.17 If there exists a unique symmetric bounded solution
to the Riccati equation

Z+ANZ+ZA+Q—Z(B'BY —B*B¥)Z =0, Z(T)=Q,

then the two-player zero-sum game admits a unique feedback
saddle-point given by (for details see p. 327)

V(@) = (=1)'B'(#)[Z(t)x(t) + ((¢)]
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