Game Theory 2014

Exta Lecture 1 (BoB)

e Pursuit Evasion Games

e Isaacs’ Equation

e Singular Surfaces

e [The Lady in the Lake

e [ he Homicidal Taxi Driver
e The Exam

Baser/QOlsder, Ch. 8, except 8.2.2



To understand

e [saacs equation and Minimum principle for Pursuit evasion
games

e definition of semi-permeable surface and barriers

Material

e Copies from Baser/Olsder



Pursuit-Evasion Games

The start of differential games in the 1950s-60s

Special case of two player zero-sum game treated before

Bo= f(tz(t),u(t),u’(t)), x(0) =
T = inf{te R:(x(t),t) € A}

)
/0 g(t, 2(t), u (1), w2 () dt + o(T, (T))

)

L(u', u?)

w!, minimizer, pursuer, P

uw?, maximizer, evader, E



Saddle Point

Feedback-strategies u'(t) = ~*(t, z(t))

Solutions are often first obtained in open-loop strategies and then
synthesized to feedback strategies, provided that they both exist.

Ty, %) < Ty, ™) < (v ™)



Upper and Lower Isaacs Equations

V(t,x) = min max {/t g(s,z(s), v (s, 2(s)),v*(s,z(s)) ds + (T, :E(T))}
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(Provided V and V exist and are differentiable)



Geometrical Interpretation

Assume g = 0 (can always transform to this case).

See Figure 8.1 on p. 426. The Value function should satisfy

V(t,x) = minmaxq(7T,z(T)) = maxminq(T,z(T))
/yl ,YQ 72 ,yl

. . V.
Minimizer chooses ! to make the inner product between [ Vx ]
t

and [ | ] minimal, and symmetricly for the maximizer.

Hence u'* and u?* are chosen as the arguments of

minmax (V. f + V) = maxmin (V.. f + V})



Semipermeable Surfaces

Along the equilibrium trajectory, V' is constant and

minmax (Vo f +V;) =0

If evader E plays optimally, u? = u** then
Vaf(t,o,ul u™) + Vi >0 Vu!

This means that maximizer E can assure that V' never decreases.
He can make sure the surface V (¢, x) = c is only traversed towards
increasing V', i.e. V' is made a semi-permeable surface.

Similarly minimizer P can assure V' never increases by playing u'*,
I.e. he can make V' = c a semi-permeable surface in the other
direction.

When both play optimally the state stays on the level set V' = ¢



The Isaacs Condition

The interchangeability of min and max is called the Isaacs condition

Interchangeability certainly holds if for all p it holds that

min max(p'f + g) = maxmin(p'f + g)

u u?

A special case of this is when

Note though that the problem with existence of a smooth V' does
not follow from this.



Theorem 8.1

If there exists a smooth V such that

e |saacs equation holds
o V(T ,z)=q(T,z) when [(T,z(T)) = 0.

o Either u'! = ~!* or u* = ~?* assures that the target set is

reached in finite time

then V is the value function and v'* and v** constitutes a saddle
point



Example, smoothness is required

T o= up+u, |up| <1, lug| <2, x(0)=0
i(t,z) = 2* =1, q(T,2(T))=[z(T)-T

Separable, so min max = max min

—V; = min max (V,(u; + uq)) = |V,

u1|<1 |uz|<2
One solution given by V (x,t) = |z| — t.
There are also spurious solutions, for instance V (x,t) =2 —t — |z|.

Candidates for V' can often be found via the minimum principle,
Theorem 8.2
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Example

Read Example 8.1 where the value function V = x; + x5 guarantees
a saddle point and the semi-permeable surfaces are illustrated.

Skip 8.2.2
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Capturability

When can the minimizer/pursuer P, force the game to terminate?

Consider the cost functional

{ —1 if (x(t),t) € A for some t < o

1 else

J:

See Figure 8.3, p. 433

A point is said to be on the usable part (UP) of A if (where v is
the outward pointing normal of A at z)

max min 2/’ f(z,u", u?) <0

u? ul

This means that the state penetrates A. So the Pursuer, u' can
force the game to terminate, whatever u? does.
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Barriers

The (barrier) surface S separates terminating states from non-

terminating states. If p(x) is a normal to S then

min max p'(z) f(z, u',u?) =0

So for u™* = ~"*(x) this leads to
(@) f (v v (2) =0

Differentiation leads to the equation

d of\’
d_]Z:_(a_D p. p(T)=v

where v is the outward normal of A at S.
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Example — The Homicidal Taxi Driver

The pursuer is driving a circular car with radius S and constant
velocity v; = 1. The car has a minimal turning radius w;. He is
trying to run over the evader, a pedestrian running with speed vs.
The pedestrian can change direction momentarily.

Use taxi-centric coordinate system. x5 axis is along the velocity
vector of the taxi.

1

i1 = —ulzy + vy sinu?

iy = —1+u'zy + vy cosu’, lut| <1

Capture if 27 + x5 < 37
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Usable Part and Capture Barriers
Usable part of 7 + x5 = 5%
max min v/ f(z, ', u*) <0

u? ul

max miln z1(—u'wy + vosinu®) + xo(—1 + u'zy + vy cosu’)
u u

:_CC2+U26SO

P1

See Figure 8.4 p 437. With the normal p = [
D2

] we get

min mgxxpl(—ulxg + vgsinu?) + pa(—1 +u'z' + vycosu®) =0

which gives

u = Sg1 (plfb”z — pzwl)

sinu®™ = p1/(p; +p3), cosu® = po/(p: + p5)

15



The Barriers

Complicated to solve for all possible cases

p1 = —p2U17 P2 = —plul

with p1(T) = cosa, po(T) = sina. For t close to T it can be
shown that u! = sign x;, hence

pi(t) =cos(t —T + ), po(t)=sin(t —T + «)

which gives

ri(t) = (B+({—T)vg)cos(t—T +a)+1—cos(t—"1T),
ro(t) = (B+ (t—T)vg)sin(t —T + «) —sin(t —T)
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Result

If 52 + v < 1 (the other cases are more complicated) then
pedestrian survives if

B < wvgarcsin(ve) +4/1 —vs — 1

needed car radius/turning radius for sure hit

0.45

0.4r

0.351

beta/R

0.05r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ped/car speed v2
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Barriers for v, = 0.5, 3 = 0.12

E escapes, except just in front of the car.
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Barriers for v9 = 0.5, 5 = 0.5

Sure hit. The Barrier ends, can go around. See figure 8.7, p.241
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The Person in the Lake

The evader E is swimming with velocity vy in a circular pond of
radius R . The Pursuer is running on the shore with velocity 1.
P wants to intercept E when he/she reaches the shore. The goal
function is 8(T'), see figure 8.12.

In polar coordinates
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The Person in the Lake
Isaacs’ equation (8.36) gives

u* = sign(6(T))

sinu® = %sign(@(T)), if r(t) > R
r

When r(t) < Ruvs the Isaacs equation gives 0 = 0, hence no
information. It is easy to see that in the middle of the pond, the
evader can outmaneuver P, i.e. keep 0 =7

After E leaves the inner circle Rvy, P runs in the same direction all

of the time and E swims in a straight line tangent to the circle of
radius Ruvs

Also study the nice interpretation in Fig 8.13b.

21



The Outcome

The outcome of the game is

1
6(T)| = 7 + arccos vg — —4/ (1 — v3)
U2

if vg > 0.21723... (otherwise the person can not escape).
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