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A Course on Distributed Control

Anders Rantzer and Enrico Lovisari

Schedule

Mo April 8 at 1315-1430 lecture

Mo April 15 at 1315-1600 lecture and exercises

Fr April 26 at 0815-1100 lecture and exercises

We May 8 at 0915-1200 lecture and exercises

We May 15 at 0915-1200 lecture and exercises

We May 22 at 0915-1000 lecture

We May 29 at 0915-1200 exercises

A Course of Six Lectures

1. Introduction

Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance

Control with information delays

Example: Tele-operation

3. Dual decomposition

The saddle algorithm

Example: The Internet protocol

4. Distributed MPC

Example: Water Supply Network

5. Distributed control of positive systems. Consensus algorithms

6. Spatially invariant systems.

Lecture 6

• Spatially invariant systems

○ Separation of spatial frequencies

○ Approximation by spatial truncation

Spatially invariant systems

�
�tψ (x, t) = [Aψ ](x, t) + [Bψ ](x, t)

y(x, t) = [Cψ ](x, t) + [Dψ ](x, t)

The variable x = (x1, . . . , xd) is called the spatial variable. The

components xk could be integers, real numbers or, more

generally, elements of a locally compact abelian group.

The operators A, B,C,D are assumed to be translation

invariant, e.g. ATx = TxA for every translation Tx.

Example 1 — String of vehicles

In an infinite string of vehicles, let pi be the position of vehicle i

relative to vehicle i− 1. Let ui and wi be control force and

disturbance acting on vehicle i. Then

d2pi

dt2
(t) = ui(t) − ui−1(t) +wi(t) −wi−1(t)

i = 0,±1,±2, . . .

Here the ”spatial” variable i belongs to the set of integers.

Example 2 — Spring connected bodies

In an infinite string of bodies connected by springs, let pi be the

position of body i, which is subject to a control force ui and a

disturbance wi. Then

d2pi

dt2
(t) = 1

2
[pi+1(t) + pi−1(t) − 2pi(t)] + ui(t) +wi(t)

i = 0,±1,±2, . . .

Here the ”spatial” variable i belongs to the set of integers.

Example 3

Consider the system




ψ̇1
ψ̇2
ψ̇3
ψ̇4


 =




ψ2 + 2ψ4
ψ1 + 2ψ3
ψ4 + 2ψ2
ψ3 + 2ψ1


 =




0 1 0 2

1 0 2 0

0 2 0 1

2 0 1 0







ψ1
ψ2
ψ3
ψ4




The system can also be written as

ψ̇ (i, j) =ψ (i+1, j) + 2ψ (i+1, j+1)

where i, j ∈ {0, 1} and addition is taken modulo 2.

Here the spatial variables are i and j.
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Separation of spatial frequencies

Fourier transform in the spatial dimension gives

d

dt
ψ̂ (λ , t) = Â(λ)ψ̂ (λ , t) + B̂(λ)û(λ , t)

y(λ , t) = Ĉ(λ)ψ̂ (λ , t) + D̂(λ)û(λ , t)

Control synthesis can be done independently for different

values of the “spatial frequency” λ . This gives

û(λ , t) = −K̂ (λ)ψ̂ (λ , t)

Transforming back from frequency domain gives

u(t) = −(K ∗ψ )(t)

where the convolution kernal K is obtained from K̂ by inverse

Fourier transform.

Example 2 — Spring connected bodies

d2pi

dt2
(t) = 1

2
[pi+1(t) + pi−1(t) − 2pi(t)] + ui(t) +wi(t)

d2 p̂

dt2
(t) = 1

2
(λ + λ−1 − 2)

︸ ︷︷ ︸
α λ

p̂(λ , t) + û(λ , t) + ŵ(λ , t)

With ψ = (p, dp
dt
) we get d

dt
ψ̂ =

[
0 1

α λ 0

]
ψ̂ +

[
0

1

]
(û+ ŵ).

The cost
∑
i

∫∞
0
[pi(t)2 + (dpidt (t))2 + ui(t)2]dt is minimized by

û(t) = −(K ∗ψ )(t) where K̂ (λ) = [P̂12 P̂22] and

P̂(λ) =
[
P̂11 P̂12

P̂12 P̂22

]
where





P̂12(λ) = α λ +
√

α 2λ + 1

P̂22(λ) =
√
2P̂12 + 1

P̂11(λ) = (P̂12 −α λ)P̂22

Discrete Fourier Transform

The discrete Fourier transform for N states is given by the state

transformation matrix [F]kl = 1√
N
ei2π kl where

k, l = 0, 1, . . . ,N − 1.
In particular, for N = 2

F = F−1 = 1√
2

[
1 1

1 −1

]

Example 3




ψ̇ 1
ψ̇ 2
ψ̇ 3
ψ̇ 4


 =




ψ 2 + 2ψ 4
ψ 1 + 2ψ 3
ψ 4 + 2ψ 2
ψ 3 + 2ψ 1


 =




0 1 0 2

1 0 2 0

0 2 0 1

2 0 1 0




︸ ︷︷ ︸
A




ψ 1
ψ 2
ψ 3
ψ 4




The two spatial dimensions given by the permutations

(ψ 1,ψ 2,ψ 3,ψ 4) → (ψ 2,ψ 1,ψ 4,ψ 3) → (ψ 1,ψ 2,ψ 3,ψ 4)
(ψ 1,ψ 2,ψ 3,ψ 4) → (ψ 3,ψ 4,ψ 1,ψ 2) → (ψ 1,ψ 2,ψ 3,ψ 4)

have corresponding state transformation matrices

S = 1√
2




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


 T = 1√

2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




which diagonalize TSAS−1T−1 = diag{3,−3,−1, 1}. Design

controllers for each state separately and transform back!
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Localization of Controller

Control synthesis done independently for different λ gives

û(λ , t) = −K̂ (λ)ψ̂ (λ , t)

Transforming back from frequency domain gives

u(t) = −(K ∗ψ )(t)

Interestingly optimal controllers have a natural degree of

decentralization, reflected in exponential decay of the

convolution kernal. In particular, when the spatial coordinate is

an integer, analytic extension of K̂ (λ) outside the unit circle to

R−1 ≤ pλ p ≤ R implies that K (n) decays exponentially as R−pnp.

Hence, a distributed controller can be obtained by truncation.

Summary

◮ Spatial invariance is inherited by optimal controllers

◮ Distributed controllers can be obtained by spatial truncation


