A Course on Distributed Control

Anders Rantzer and Enrico Lovisari

A Course of Six Lectures

1. Introduction
Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance
Control with information delays
Example: Tele-operation
3. Dual decomposition
The saddle algorithm
Example: The Internet protocol

4. Distributed MPC
Example: Water Supply Network

5. Distributed control of positive systems. Consensus algorithms

6. Spatially invariant systems.

Example 1: Transportation Networks
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How do we select ¢;; to minimize the gain from w to 3}, x;?

Example 2: A vehicle formation
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e Examples

o Positive Systems

o Distributed Verification and Synthesis
o Positively Dominated Systems

o Consensus Algorithms

Transportation Networks in Practice

Application projects in Lund:

» Cloud computing / server farms
» Heating and ventilation in buildings
» Traffic flow dynamics

» Production planning and logistics

Example 2: Vehicle Formations
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&1 = —x1 + L13(x3 — x1)

% = fo1(%1 — x2) + £o3(x3 — x2)

%3 = Laa(x2 — x3) + L34 (x4 — x3) +w
X4 = —4x4 + 543(363 — x4)

How do we select ¢;; to minimize the gain from w to Y, x;?



Example 3: Mass-spring system

)
x4 x1
x3
éc'i+di3‘c+kixi=Z€ij(xj—xi)+wi i=1,...,N
J

Given masses m; and local spring constants k;, select the ¢;; to
minimize the gain from w to x?

Outline

o Examples

o Positive Systems

o Distributed Verification and Synthesis
o Positively Dominated Systems

o Consensus Algorithms

Positive Systems and Nonnegative Matrices

Classics:

» Perron (1907) and Frobenius (1912)
» Leontief (1936)
» Hirsch (1985)

Books:

» Gantmacher (1959)
» Berman and Plemmons (1979)
» Luenberger (1979)

Recent control related work:

» Angeli and Sontag (2003)
» Moreau (2004)
» Tanaka and Langbort (2010)

Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different
Lyapunov functions:

Aé <0 ATP+PA <0 ATz<0

V(x) = mfx(xk/é‘k) V(x) =«TPx V(x) =2«

Example 4: Consensus Dynamics
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x,-(t-i—l)=xi(t)+Z£ij[xj(t)—xi(t)] i=1,...,N

What parameters ¢;; guarantee convergence to consensus?
Can we maximize the speed of convergence?

Positive systems have nonnegative impulse response

If the matrices A, B and C have nonnegative coefficients
except possibly for the diagonal of A, then the system

%:Ax+Bu
y=Cx

has non-negative impulse response Ce!B.

Examples:

» Probabilistic model with x;, the probability of state &.

» Economic system with x;, the quantity of commaodity %.

» Chemical reaction with x; the concentration of reactant k.
» Ecological system with x;, the population of species k.

Stability of Positive systems

Suppose the matrix A has nonnegative off-diagonal elements.
Then the following conditions are equivalent:

(z) The system ‘é—’; = Ax is exponentially stable.

(i1) There exits a vector £ > 0 such that A¢ < 0.
(The vector inequalities are elementwise.)

(iii) There exits a vector z > 0 such that ATz < 0.

(iv) There is a diagonal matrix P > 0 such that
ATP 4+ PA<0

Performance of Positive systems

Suppose that G(s) = C(sI — A)~™'B + D where A € R™" is
Metzler, while B € R**!, C € R1*" and D € R,. Define
|Gllco = sup, |G (iw)]|. Then the following are equivalent:

(i) The matrix A is Hurwitz and |G|l < 7.

.. A . .
(z2) The matrix {C D_ 7] is Hurwitz.
(2i7) There is diagonal P > 0 such that x = Ax + Bw

gives
9 o7 Px(0) + 10x(0) + Du (o) < plo(t)P
(iv) Thereis 0 < p € R™ such that & = Ax + Bw gives

& (p"10)]) + 1Cx(0) + Du(®)] < ylu(®)

Moreover, if A is Hurwitz, then ||Gl|o, = G(0).



Outline A Distributed Stability Test
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Stability of x = Ax follows from existence of &, > 0 such that

o Introduction

o Positive Systems an a0 aw] [& 0
« Distributed Verification and Synthesis asi az axn 0| |&| |0

0 a3 azs as| & 0
o Positively Dominated Systems asn 0 as3 as] [&4 0
o Consensus Algorithms A

The first node verifies the inequality of the first row.
The second node verifies the inequality of the second row.

Verification is scalable!

A Distributed Search for Stabilizing Gains Optimizing H,, Performance
an—b  an 0 ai Let D be the set of diagonal matrices with entries in [0, 1].
Suppose az1(;+ b ZZZ ; ﬁz 323 aO > 0 for £1,4 € [0,1]. Suppose B,C,D >0 and A + ELF is Metzler for all L € D.
32 2 33 32
o 0 Q43 Qg If F > 0, then the following are equivalent:
(i) There exists L € D such that A + ELF is Hurwitz
For stabilizing gains 1, £s, find 0 < w5, < &, such that and ||C[sI — (A+ ELF)]7'B + D|| < 7.
ii) Th ist R%, R™ with
wn a0 aul [& 1 0 o (it) There exist £ € i€ R wi
ag1 Qg2 Qgg 0 52 + 1 -1 U1 < 0 A§+Eﬂ+B<O C§+D<7 ﬂSFg
0 as az azp| (&3 0 1] [ 0 . . . .
a0 asm aw] |& 0 0 0 Alternatively, if E > 0, then (i) is equivalent to

(iiz) There exist p € R%, g € R with

and set 41 = uy /&1 and e = us/Es. Every row gives a local test.
ATp+FTqg+CT <0 BTp+D<y q<ETp

Distributed synthesis by linear programming (gradient search).

Example 1: Transportation Networks Example 1: Transportation Networks

X2

A = diag{-1,2,3,—4} K=0
x4 x1 _
L = diag{431, 412,32, 023,243, €34} /£

w £000
x3 -1 1 0 0 0 0 0 200
0 -1 -1 1 0 0 0 £ 00
E=l1 o 12121 1| F=loo 7o
%1 11—t big 0 0 k3 0 0 0 0 0 1 -1 0020
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The closed loop matrix is A + ELF.
How do we select £; € [0,£] to minimize the gain from w to 3", x;?
Example 1: Transportation Networks Example 2: Vehicle Formations
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Minimize ), &; subject to
0> & — iz + .
> —&1— iz + pa &1 = —x1 + 13 (x3 — x1)

0> 285 — po1 — lgs + Us2
0 > 383 + 13 + Moz — Maz — Mag + Maz + 1
02> —484 + p134 — Ha3
and 0 < p;; < €&;. Then select 4;; to get p;; = £;;¢;.
Optimal solution has £13 = o3 = €43 =0, Lo = f39 = {34 = L.

K = L21(x1 — x2) + Lo3(x3 — X2)
%3 = L32(x2 — x3) + £34(x4 — x3) +w
X4 = —4x4 + 243(363 — x4)

Select ¢;; € [0,£] to minimize the gain from w to >oixi?



Example 2: Vehicle Formations

X2

X4 X1

Minimize p3 subject to

0>—-p1—quz+qga1+1
0> —go1—qe3+gqae2+1
0>qi3+qes—qs2—qsa+qas+1
0> —4ps+qsa—qazs+1
and 0 < g;; < £p,. Then select ¢; to get q;; = 4;p;.
Optimality: €13 = bp3 = €43 =0, lgg=l34 =0, 2<ly <4

Example 3: Mass-spring system

X4 X1

x3

xi+dia'c+kixi=Zlij(xj—xi)+wi i=1,...,N
J

Given masses m; and local spring constants &;, select
£4;; € [0,£] to minimize the gain from w; to x,?

Externally Positive Systems

G € RHZ*" is called externally positive if if the corresponding
impulse response g(¢) is nonnegative for all ¢. The set of all
such matrices is denoted PHZ*".

Suppose G,H € PH". Then
» GH ¢ PH"
» aG + bH € PH" when a,b € R,.
> [IGlleo = IG(O)]I-
» (I —G)~ € PHZ™ if and only if G(0) is Schur.

Example 3: Mass-spring system
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Example 3: Mass-spring system

B+ did+ ki =y 4j(a; — %) +wi
J

(32 +dis + ki + Zzi,)Xi(s) = Z (e,-,-x,-(s) + (@ —Z,-J-)X,-(s)> + Wi(s)

J
X = (A+ELF)X + BW

The transfer matrices B, E and A + ELF are positively dominated for
all L € D provided that d; > k; + Zj £ij.

Exercises:
How do you compute a stabilizing gain matrix L € D?

How do you compute L € D to minimize gain from w to x?

X2

X4 X1

X3
X +dix + kix; =Z€ij(xj—xi)+wi d; > k;
J

In frequency domain:

1

Xi(s) = s+ d;s + k;

3" 5(X;(5) — Xi(s)) + Wi(s)
J

Positively Dominated Systems

G € RH}*" is called positively dominated if |Gy, (iw)| < G;z(0)
for € R. The set of all such matrices is denoted DH.*".

Suppose G,H € DHZ*. Then
» GH € DHZ™
> aG + bH € DHZ" when a,b € R,.
> Gl = [G(O)].
» (I -G)™! € DHZ™ if and only if G(0) is Schur.

Outline
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Example 4: Consensus Dynamics

X2

X4 X1

X3
xi(t+1) =x(t) + Y bjle;(0) — ()] i=1,...,N
J

What parameters ¢;; guarantee convergence to consensus?
Can we maximize the speed of convergence?

Can the previous theory be used?

Example 4: Consensus Dynamics

xi(t+1) =x(t) + Y Llijlx;(0) —x(t)]  i=1,...,N
J

Positive system if £;; > 0 and 3 ; ¢;; < 1. The total system is
x(t+1) = Wx(z)
where W > 0 and W1 =1, i.e. W is a stochastic matrix.

The state x(¢) converges to the average if and only if

lim W = ﬂ

t—o0 n

and the speed of convergence is given by the spectral radius of

T
w11
n

If W is symmetric, this equals |W — %H which is convex in W!

Summary

Example 4: Consensus Dynamics

X2

X4 x1

X3
xi(t+1) =x(t) + Y ljle() —x(t)]  i=1,...,N
J

What parameters ¢;; guarantee convergence to consensus?
Can we maximize the speed of convergence?

Can the previous theory be used? No, system not stabilizable!

Open problems

Let

ai(t+1) = x;(6) + Y &lj(t — 1) — 2:(8)] + wi(?)
J

where w; are white noise sequences.

Problems:

1. Find £;; to minimize variance of x
2. Do the same thing with ¢;; transfer functions

Classical hard problems solvable for positive systems:

» Static output feedback

H, /L, optimal decentralized controllers

» No need for global information

» Verification and synthesis scale linearly !

» Consensus theory is different — not stabilizable!

v

Further reading:

Rantzer, Distributed control of positive systems, 2012
Xiao/Boyd, Fast linear iterations for distributed averaging, 2004




