

Mo	April	8	at	1315-1430	lecture		
Mo	April	15	at	1315-1600	lecture	and	exercises
Fr	April	26	at	0815-1100	lecture	and	exercises
We	May	8	at	0915-1200	lecture	and	exercises
We	May	15	at	0915-1200	lecture	and	exercises
We	May	22	at	0915-1200	lecture	and	exercises
We	May	29	at	0915-1200	exercise	es	

A Course of Six Lectures

- 1. Introduction Fixed modes, Team theory, Witsenhausen's counterexample
- Partial nestedness and quadratic invariance Control with information delays Example: Tele-operation
- 3. Dual decomposition The saddle algorithm Example: The Internet protocol
- Distributed MPC Example: Water Supply Network
- 5. Distributed control of positive systems. Consensus algorithms
- 6. Spatially invariant systems.

Example 1: Transportation Networks

How do we select ℓ_{ij} to minimize the gain from w to $\sum_i x_i$?

Lecture 5

- Examples
- Positive Systems
- Distributed Verification and Synthesis
- Positively Dominated Systems
- Consensus Algorithms

Transportation Networks in Practice

Application projects in Lund:

- Cloud computing / server farms
- Heating and ventilation in buildings
- Traffic flow dynamics
- Production planning and logistics

Example 2: Vehicle Formations

How do we select ℓ_{ij} to minimize the gain from w to $\sum_i x_i$?

$$\ddot{x}_i+d_i\dot{x}+k_ix_i=\sum_j\ell_{ij}(x_j-x_i)+w_i \qquad i=1,\ldots,N$$

Given masses m_i and local spring constants k_i , select the ℓ_{ij} to minimize the gain from w to x?

Outline

- Examples
- Positive Systems
- Distributed Verification and Synthesis
- Positively Dominated Systems
- Consensus Algorithms

Positive Systems and Nonnegative Matrices

Classics:

- Perron (1907) and Frobenius (1912)
- Leontief (1936)
- Hirsch (1985)

Books:

- ► Gantmacher (1959)
- Berman and Plemmons (1979)
- Luenberger (1979)

Recent control related work:

- Angeli and Sontag (2003)
- Moreau (2004)
- ► Tanaka and Langbort (2010)

Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different Lyapunov functions:

Example 4: Consensus Dynamics

$$x_i(t+1) = x_i(t) + \sum_j \ell_{ij}[x_j(t) - x_i(t)]$$
 $i = 1, ..., N$

What parameters ℓ_{ij} guarantee convergence to consensus? Can we maximize the speed of convergence?

Positive systems have nonnegative impulse response

If the matrices A, B and C have nonnegative coefficients except possibly for the diagonal of A, then the system

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx$$

has non-negative impulse response $Ce^{At}B$.

Examples:

- Probabilistic model with x_k the probability of state k.
- Economic system with x_k the quantity of commodity k.
- Chemical reaction with x_k the concentration of reactant k.
- Ecological system with x_k the population of species k.

Stability of Positive systems

Suppose the matrix A has nonnegative off-diagonal elements. Then the following conditions are equivalent:

- (*i*) The system $\frac{dx}{dt} = Ax$ is exponentially stable.
- (*ii*) There exits a vector $\xi > 0$ such that $A\xi < 0$. (The vector inequalities are elementwise.)
- (*iii*) There exits a vector z > 0 such that $A^T z < 0$.
- (iv) There is a *diagonal* matrix $P \succ 0$ such that $A^T P + PA \prec 0$

Performance of Positive systems

Suppose that $\mathbf{G}(s) = C(sI - A)^{-1}B + D$ where $A \in \mathbb{R}^{n \times n}$ is Metzler, while $B \in \mathbb{R}^{n \times 1}_+$, $C \in \mathbb{R}^{1 \times n}_+$ and $D \in \mathbb{R}_+$. Define $\|\mathbf{G}\|_{\infty} = \sup_{\omega} |G(i\omega)|$. Then the following are equivalent:

- (*i*) The matrix *A* is Hurwitz and $\|\mathbf{G}\|_{\infty} < \gamma$.
- (*ii*) The matrix $\begin{bmatrix} A & B \\ C & D \gamma \end{bmatrix}$ is Hurwitz.
- (iii) There is diagonal $P \succ 0$ such that $\dot{x} = Ax + Bw$ gives

$$\frac{d}{dt}x(t)^{T}Px(t) + |Cx(t) + Dw(t)|^{2} \le \gamma^{2}|w(t)|^{2}$$

(*iv*) There is $0 such that <math>\dot{x} = Ax + Bw$ gives

$$\frac{d}{dt}\left(p^{T}|x(t)|\right) + |Cx(t) + Dw(t)| \le \gamma |w(t)|$$

Moreover, if A is Hurwitz, then $\|\mathbf{G}\|_{\infty} = \mathbf{G}(0)$.

Outline

A Distributed Stability Test

- Introduction
- Positive Systems ο
- **Distributed Verification and Synthesis** .
- 0

0

x_4 x_1 x2 **X**3 ◯⊴ -()) <u>-</u>O

Stability of $\dot{x} = Ax$ follows from existence of $\xi_k > 0$ such that

$\left[a\right]$	11	a_{12}	0	a_{14}	[ξ1]		[0]
a	21	a_{22}	a_{23}	0	ξ_2	/	0
()	a_{32}	a_{33}	a_{32}	$ \xi_3 $	~	0
$\lfloor a \rfloor$	41	0	a_{43}	a_{44}	$[\xi_4]$		[0]
_			á		/		

The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

Verification is scalable!

Optimizing H_{∞} Performance

Let \mathcal{D} be the set of diagonal matrices with entries in [0, 1]. Suppose $B, C, D \ge 0$ and A + ELF is Metzler for all $L \in \mathcal{D}$.

If $F \ge 0$, then the following are equivalent:

- (*i*) There exists $L \in \mathcal{D}$ such that A + ELF is Hurwitz and $||C[sI - (A + ELF)]^{-1}B + D||_{\infty} < \gamma$.
- (*ii*) There exist $\xi \in \mathbb{R}^n_+$, $\mu \in \mathbb{R}^m_+$ with $A\xi + E\mu + B < 0 \qquad C\xi + D < \gamma \qquad \mu \le F\xi$

Alternatively, if $E \ge 0$, then (i) is equivalent to

(*iii*) There exist
$$p \in \mathbb{R}^n_+$$
, $q \in \mathbb{R}^m_+$ with
 $A^T p + F^T q + C^T < 0 \quad B^T p + D < \gamma \quad q \le E^T p$

Example 1: Transportation Networks

$$\begin{split} A &= \operatorname{diag}\{-1,2,3,-4\} \qquad K = 0 \\ L &= \operatorname{diag}\{\ell_{31},\ell_{12},\ell_{32},\ell_{23},\ell_{43},\ell_{34}\}/\overline{\ell} \\ E &= \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix} \quad F = \begin{pmatrix} \overline{\ell} & 0 & 0 & 0 \\ 0 & \overline{\ell} & 0 & 0 \\ 0 & 0 & \overline{\ell} & 0 \\ 0 & 0 & \overline{\ell} & 0 \\ 0 & 0 & \overline{\ell} & 0 \\ 0 & 0 & 0 & \overline{\ell} \end{pmatrix} \end{split}$$

The closed loop matrix is A + ELF.

Example 2: Vehicle Formations

Select $\ell_{ij} \in [0, \overline{\ell}]$ to minimize the gain from w to $\sum_i x_i$?

 $a_{11} - \ell_1$

Suppose

A Distributed Search for Stabilizing Gains

 ≥ 0 for $\ell_1, \ell_2 \in [0, 1]$.

- Positively Dominated Systems
- Consensus Algorithms

For stabilizing gains ℓ_1, ℓ_2 , find $0 < \mu_k < \xi_k$ such that $\begin{bmatrix} a_{11} & a_{12} & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & 0 \\ 0 & a_{32} & a_{33} & a_{32} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \kappa \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} <$ 0 0 $0 \quad a_{43} \quad a_{44}$ a_{41} and set $\ell_1 = \mu_1/\xi_1$ and $\ell_2 = \mu_2/\xi_2$. Every row gives a local test. Distributed synthesis by linear programming (gradient search).

Example 1: Transportation Networks

How do we select $\ell_{ij} \in [0, \overline{\ell}]$ to minimize the gain from w to $\sum_i x_i$?

Example 1: Transportation Networks

Minimize $\sum_i \xi_i$ subject to

 $0 \geq -\xi_1 - \mu_{13} + \mu_{21}$ $0 \geq 2\xi_2 - \mu_{21} - \mu_{23} + \mu_{32}$ $0 \geq 3\xi_3 + \mu_{13} + \mu_{23} - \mu_{32} - \mu_{34} + \mu_{43} + 1$ $0 \geq -4\xi_4 + \mu_{34} - \mu_{43}$

and $0 \le \mu_{ij} \le \overline{\ell} \xi_j$. Then select ℓ_{ij} to get $\mu_{ij} = \ell_{ij} \xi_j$. Optimal solution has $\ell_{13} = \ell_{23} = \ell_{43} = 0$, $\ell_{21} = \ell_{32} = \ell_{34} = \overline{\ell}$.

Example 2: Vehicle Formations

Minimize p_3 subject to

$$\begin{split} 0 &\geq -p_1 - q_{13} + q_{21} + 1 \\ 0 &\geq -q_{21} - q_{23} + q_{32} + 1 \\ 0 &\geq q_{13} + q_{23} - q_{32} - q_{34} + q_{43} + 1 \\ 0 &\geq -4p_4 + q_{34} - q_{43} + 1 \end{split}$$

and $0 \leq q_{ij} \leq \overline{\ell} p_j$. Then select ℓ_{ij} to get $q_{ij} = \ell_{ij}p_j$. Optimality: $\ell_{13} = \ell_{23} = \ell_{43} = 0$, $\ell_{32} = \ell_{34} = \overline{\ell}$, $2 < \ell_{21} \leq \overline{\ell}$.

Example 3: Mass-spring system

$$\ddot{x}_i+d_i\dot{x}+k_ix_i=\sum_j\ell_{ij}(x_j-x_i)+w_i \qquad i=1,\ldots,N$$

Given masses m_i and local spring constants k_i , select $\ell_{ij} \in [0, \overline{\ell}]$ to minimize the gain from w_1 to x_1 ?

Externally Positive Systems

 $\mathbf{G} \in \mathbb{RH}_{\infty}^{m \times n}$ is called *externally positive* if if the corresponding impulse response g(t) is nonnegative for all t. The set of all such matrices is denoted $\mathbb{PH}_{\infty}^{m \times n}$.

Suppose $\mathbf{G}, \mathbf{H} \in \mathbb{PH}^{n \times n}_{\infty}$. Then

- $\blacktriangleright \mathbf{GH} \in \mathbb{PH}_{\infty}^{n \times n}$
- $a\mathbf{G} + b\mathbf{H} \in \mathbb{PH}_{\infty}^{n \times n}$ when $a, b \in \mathbb{R}_+$.
- ▶ $\|\mathbf{G}\|_{\infty} = \|\mathbf{G}(0)\|.$
- $(I \mathbf{G})^{-1} \in \mathbb{PH}_{\infty}^{n \times n}$ if and only if $\mathbf{G}(0)$ is Schur.

Example 3: Mass-spring system

$$\begin{split} \ddot{x}_i + d_i \dot{x} + k_i x_i &= \sum_j \ell_{ij} (x_j - x_i) + w_i \\ \left(s^2 + d_i s + k_i + \sum_j \bar{\ell}_{ij}\right) X_i(s) &= \sum_j \left(\ell_{ij} X_j(s) + (\bar{\ell}_{ij} - \ell_{ij}) X_i(s)\right) + W_i(s) \\ X &= (\mathbf{A} + \mathbf{ELF}) X + \mathbf{B} W \end{split}$$

The transfer matrices **B**, **E** and **A** + **E***L***F** are positively dominated for all $L \in \mathcal{D}$ provided that $d_i \ge k_i + \sum_j \overline{\ell}_{ij}$.

Exercises:

How do you compute a stabilizing gain matrix $L \in \mathcal{D}$? How do you compute $L \in \mathcal{D}$ to minimize gain from w to x?

- Introduction
- Positive Systems
- Scalable Verification and Synthesis
- Positively Dominated Systems
- Consensus Algorithms

Example 3: Mass-spring system

$$\ddot{x}_i + d_i \dot{x} + k_i x_i = \sum_j \ell_{ij} (x_j - x_i) + w_i$$
 $d_i \ge k_i$

In frequency domain:

j

$$X_i(s) = rac{1}{s^2+d_is+k_i}\left[\sum_j\ell_{ij}(X_j(s)-X_i(s))+W_i(s)
ight]$$

Positively Dominated Systems

 $\mathbf{G} \in \mathbb{RH}_{\infty}^{m \times n}$ is called *positively dominated* if $|\mathbf{G}_{jk}(i\omega)| \leq \mathbf{G}_{jk}(0)$ for $\omega \in \mathbb{R}$. The set of all such matrices is denoted $\mathbb{DH}_{\infty}^{m \times n}$.

Suppose $\mathbf{G}, \mathbf{H} \in \mathbb{D}\mathbb{H}_{\infty}^{n \times n}$. Then

- ▶ **GH** ∈ $\mathbb{D}\mathbb{H}_{\infty}^{n \times n}$
- $a\mathbf{G} + b\mathbf{H} \in \mathbb{DH}_{\infty}^{n \times n}$ when $a, b \in \mathbb{R}_+$.
- $\blacksquare \|\mathbf{G}\|_{\infty} = \|\mathbf{G}(0)\|.$
- $(I \mathbf{G})^{-1} \in \mathbb{D}\mathbb{H}_{\infty}^{n \times n}$ if and only if $\mathbf{G}(0)$ is Schur.

Outline

- Introduction
- Positive Systems
- Scalable Verification and Synthesis
- Positively Dominated Systems
- Consensus Algorithms

Outline

$$x_i(t+1) = x_i(t) + \sum_j \ell_{ij}[x_j(t) - x_i(t)]$$
 $i = 1, ..., N$

What parameters ℓ_{ij} guarantee convergence to consensus? Can we maximize the speed of convergence?

Can the previous theory be used?

Example 4: Consensus Dynamics

$$x_i(t+1) = x_i(t) + \sum_j \ell_{ij}[x_j(t) - x_i(t)]$$
 $i = 1, ..., N$

Positive system if $\ell_{ij} \geq 0$ and $\sum_j \ell_{ij} \leq 1$. The total system is x(t+1) = Wx(t)

where $W \ge 0$ and $W\mathbf{1} = \mathbf{1}$, i.e. *W* is a *stochastic matrix*. The state x(t) converges to the average if and only if

$$\lim_{t\to\infty} W^t = \frac{\mathbf{1}\mathbf{1}^T}{n}$$

and the speed of convergence is given by the spectral radius of

$$W - \frac{\mathbf{11}^T}{n}$$

If W is symmetric, this equals $||W - \frac{\mathbf{11}^T}{n}||$ which is convex in W!

Summary

Classical hard problems solvable for positive systems:

- Static output feedback
- H_{∞}/L_1 optimal decentralized controllers
- No need for global information
- ► Verification and synthesis scale linearly !
- Consensus theory is different not stabilizable!

Further reading:

Rantzer, Distributed control of positive systems, 2012 Xiao/Boyd, Fast linear iterations for distributed averaging, 2004

Example 4: Consensus Dynamics

$$x_i(t+1) = x_i(t) + \sum_j \ell_{ij}[x_j(t) - x_i(t)]$$
 $i = 1, ..., N$

What parameters ℓ_{ij} guarantee convergence to consensus? Can we maximize the speed of convergence?

Can the previous theory be used? No, system not stabilizable!

Open problems

Let

$$x_i(t+1) = x_i(t) + \sum_j \ell_{ij} [x_j(t-1) - x_i(t)] + w_i(t)$$

where w_i are white noise sequences.

Problems:

- 1. Find ℓ_{ij} to minimize variance of x
- 2. Do the same thing with ℓ_{ij} transfer functions