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A Course on Distributed Control

Anders Rantzer and Enrico Lovisari

Schedule

Mo April 8 at 1315-1430 lecture

Mo April 15 at 1315-1600 lecture and exercises

Fr April 26 at 0815-1100 lecture and exercises

We May 8 at 0915-1200 lecture and exercises

We May 15 at 0915-1200 lecture and exercises

Mo May 20 at 1315-1600 lecture and exercises

Mo May 27 at 1315-1500 exercises

A Course of Six Lectures

1. Introduction

Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance

Control with information delays

Example: Tele-operation

3. Dual decomposition

The saddle algorithm

Example: The Internet protocol

4. Distributed MPC

Example: Water Supply Network

5. Distributed control of positive systems. Consensus algorithms

6. Spatially invariant systems.

Lecture 4

◮ More on dual decompostion

◮ Distributed MPC

◮ Gradient methods for large-scale systems

Last week: Dual decomposition

min
zi
[V1(z1, z2) + V2(z2) + V3(z3, z2)]

= max
pi
min
zi,vi

[

V1(z1,v1) + V2(z2) + V3(z3,v3) + p1(z2 − v1) + p3(z2 − v3)
]

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respecive costs

Computer 1: minz1,v1
[
V1(z1,v1) − p1v1

]

Computer 2: minz2
[
V2(z2) + (p1 + p3)z2

]

Computer 3: minz3,v3
[
V3(z3,v3) − p3v3

]

while the ”market makers” try to maximize their payoffs

Between computer 1 and 2: maxp1 [p1(z2 − v1)]

Between computer 2 and 3: maxp3 [p3(z2 − v3)]

The saddle point algorithm

Update in gradient direction:

Computer 1:

{

ż1 = −�V1/�z1

v̇1 = −�V1/�z2 + p1

Computer 1 and 2: ṗ1 = z2 − v1

Computer 2: ż2 = −�V2/�z2 − p1 − p3

Computer 2 and 3: ṗ3 = z2 − v3

Computer 3:

{

ż3 = −�V3/�z3

v̇3 = −�V3/�z2 + p3

Globally convergent if Vi are convex!

[Arrow, Hurwicz, Usawa 1958]

A long history

The saddle algorithm:

Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems:

Mesarovic, Macko, Takahara 1970

Singh, Titli 1978

Findeisen 1980

Major application to water supply network:

Carpentier and Cohen, Automatica 1993

Case study: A water supply network in Paris

[Carpentier and Cohen, Automatica 1993]

◮ Network serving about 1 million inhabitants

◮ 20 main water reservoirs

◮ 30 pumping stations

◮ 13 peripheral subnetworks

Challenges for control

◮ Minimize cost for pumping

◮ Bounds on reservoirs

◮ Bounds and delays in pumping power

◮ Prediction of consumption

Optimal control using dual decomposition and saddle algorithm

Subnetworks separated by two variables: Water flow and price
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Important Aspects of Dual Decomposition

◮ Very weak assumptions on graph

◮ No need for central coordination

◮ Natural learning procedure is globally convergent

◮ Unique Nash equilibrium corresponds to global optimum

Conclusion: Ideal for distributed control synthesis

A control problem with graph structure
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Minimize the convex objective
∑N
t=0

J∑

i=1

{i(xi(τ ),ui(τ ))

︸ ︷︷ ︸

{(x(τ ),u(τ ))

with convex constraints xi(τ ) ∈ Xi, ui(τ ) ∈ Ui and x(0) = x̄.

Decomposing the problem

Minimize
∑N
t=0 {(x(τ ),u(τ ))

subject to
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


where x(0) = x̄ and

vi =
∑

j ,=iAi jx j

holds for all i.

Decomposing the Cost Function

max
p
min
u,v,x

N∑

τ=0

J∑

i=1

[

{i(xi,ui) + p
T
i

(

vi −
∑

j ,=iAi jx j

) ]

= max
p

∑

i

min
ui,xi

N∑

τ=0

[

{i(xi,ui) + p
T
i vi − x

T
i

(
∑

j ,=iA
T
jipj

) ]

︸ ︷︷ ︸

{p
i
(xi,ui,vi)

so, given the sequences {pj(t)}
N
t=0, agent i should minimize

N∑

τ=0

{i(xi,ui)

︸ ︷︷ ︸

local cost

+

what he expects others to charge him
︷ ︸︸ ︷

N∑

τ=0

pTi vi −
N∑

τ=0

xTi

(
∑

j ,=iA
T
jipj

)

︸ ︷︷ ︸

what he is payed by others

subject to xi(t+ 1) = Aiixi(t) + vi(t) + ui(t) and xi(0) = x̄i.

Distributed Optimization Procedure

Local optimizations in each node

V
N,p
i (x̄i) =min

ui,xi

N∑

τ=0

{pi
(
xi(τ ),ui(τ ),vi(τ )

)

can be coordinated by (local) gradient updates of the prices

pk+1i (τ ) = pki (τ ) + γ ki

[

vki (τ ) −
∑

j ,=iAi jx
k
j (τ )

]

Future prices included in negotiation for first control input!

Convergence guaranteed under different types of assumptions

on the step size sequence γ ki .

Distributed Optimality Conditions

Suppose that Qi,Ri > 0 for i = 1, . . . ,J . Then the saddle point

max
p
min
u,v,x

N∑

t=0

J∑

i=1

[

pxip
2
Qi
+ puip

2
Ri
+ 2pTi

(

vi −
∑

j ,=iAi jx j

) ]

with minimization over system dynamics with xi(0) = x
0
i and

maximization with p(N) = 0, is uniquely defined by

ui(t) = R
−1
i B

T
i pi(t) vi(t) =

∑

j ,=iAi jx j(t)

pi(t− 1) =
∑

jA
T
ijpj(t) − Qixi(t)

Notice:

Similarity with Pontryagin’s maximum principle in discrete time

Future prices are relevant for consensus about todays control

Dynamics in vector form
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︸ ︷︷ ︸

x0i

Optimality conditions in vector form

Let pi, ui and xi be the vectors of prices, inputs and states for

t = 0, 1, 2, . . . ,N. Then

min
u,x

J∑

i=1

(

pxip
2
Qi
+ puip

2
Ri

)

subject to xi =
∑

jAi jx j +Biui + x
0
i

= max
p
min
u,x

J∑

i=1

[

pxip
2
Qi
+ puip

2
Ri
− 2pTi

(
∑

jAi jx j +Biui − xi

) ]

Differentiation with respect to p, u and x gives the saddle point

xi =
∑

jAi jx j +Biui + x
0
i

ui = R
−1
i B

∗
ipi

pi =
∑

jA
∗
i jp j − Qixi

How do we reach this equilibrium by a distributed algorithm?
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Solution by saddle algorithm

The equilibrium equations

xi =
∑

jAi jx j +Biui + x
0
i

ui = R
−1
i B

∗
ipi

pi =
∑

jA
∗
i jp j − Qixi

can be solved distributively by iteration:

xi := Q
−1
i

(

pi −
∑

jA
∗
i jp j

)

ui = R
−1
i B

∗
ipi

p+i := pi − γ i

(
∑

jAi jx j +Biui + x
0
i − xi

)

Negotiation of future prices needed to decide first control input!

Lecture 4

◮ More on dual decompostion

◮ Distributed MPC

◮ Gradient methods for large-scale systems

Idea of Distributed Model Predicitve Control

Replace the original problem by iterative online solutions of the

decentralized finite horizon problem

min
xi,ui

N∑

t=0

l
p
i (xi(t),ui(t),vi(t))

Two sources of error: Finite horizon and non-optimal prices

70 1 2 3 4 5 6

x

t

A Distributed MPC Algorithm

At time t:

1. Measure the states xi(t) locally.

2. Use gradient iterations to generate
◮ price prediction sequences {pi(t,τ )}

N
τ=0

◮ state prediction sequences {xi(t,τ )}
N
τ=1

◮ input prediction sequences {ui(t,τ )}
N
τ=1

warm-starting from predictions at time t− 1.

3. Apply the inputs ui(t) = ui(t, 0).

Important parameters: Prediction horizons Ni, number of

gradient iterations Ki and gradient step sizes γ i.

Fixed or flexible parameters Ni, Ki, γ i?

Fixed parameters

◮ Simpler implementation

◮ Linear plant, quadratic cost gives distributed LTI controllers

◮ Can be analyzed off-line or on-line

Flexible parameters

◮ Useful to handle hard state constraints

◮ Can speed up on-line computations

◮ Can slow down on-line computations

Hydro Power Valley

Benchmark in EU-project HD-MPC coordinated from Delft

Equipped with

10 turbines (T1,T2,D1, . . . ,D6,C1t,C2t) and 2 pumps (C1p,C2p)

3 reservoirs (lakes)

6 dams and reaches

Objectives: Follow power-reference. Avoid flooding.

Hydro Power Valley - modeling

Modeling:

1. Saint Venant PDE (mass and volume balance)

2. Spatial discretization (MOL) [ non-linear ODE:s (249

states, 12 inputs, used as simulation model)

3. Linearization, discretization (h=30 min) and model

reduction [ MPC-model (32 states, 12 inputs)

Hydro Power Valley - control

Difficulties:

◮ Non-linear power-production p(t) = u(t)TSix(t)

- Linearize around nominal working point (x0,u0),
∆p = uT0 S∆x + xT0 S

T∆u

◮ Non-linear constraints; uCituCip = 0, i = 1, 2

- We have uCit ≥ 0 and uCip ≤ 0, penalize −uCituCip

Cost function:

N−1∑

t=0

(

1

2

[
∆x(t)
∆u(t)

]T

H

[
∆x(t)
∆u(t)

]

+ γ

∥
∥
∥
∥
P

[
∆x(t)
∆u(t)

]

− ∆pre f (t)

∥
∥
∥
∥
1

)

with P = [uT0 S x
T
0 S
T ]
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Simulation results

Control horizon: N = 10 (5 hours)

Figure : Power reference tracking (left) and Dam water levels (right)
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Notation

For a distributed accuracy test, let V̄
p
i (xi) be an upper bound on

min
ui,vi,xi

∞∑

τ=0

{pi
(
xi(τ ),ui(τ ),vi(τ )

)

Such an upper bound can for example be computed by

minimization over a finite time horizon with a terminal constraint

at the origin.

Theorem on accuracy of distributed MPC

Suppose x(t+ 1) = Ax(t) + Bu(t) for t ≥ 0 and for some p that

V
Ni(t),p(t,⋅)
i (xi(t)) + (1−α ){i

(
xi(t),ui(t)

)

≥ V̄
p(t,⋅)
i

(
xi(t+ 1)

)
+ {

p(t,⋅)
i

(
xi(t),ui(t),

∑

j ,=iAi jx j(t)
)

for all i and t. Then

α

∞∑

t=0

{(x(t),u(t)) ≤ V∞(x̄)

Notice: Failure of inequality hints on update of Ni or Ki!

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control

problems via independent decision-makers in every node,

acting in their own interest!

◮ Optimal strategies independent of global graph structure!

◮ States are measured only locally

◮ Linearly complexity (given horizon and iteration scheme)

◮ Distributed bounds on distance to optimality

Lecture 4

◮ More on dual decomposition

◮ Distributed MPC

◮ Gradient methods for large-scale systems

Controller Tuning for Large Tri-diagonal Plant

Minimize V = E
∑n
i=1

(
pxip
2 + puip

2
)
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...
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We will optimize a tri-diagonal control structure

L̄ =









∗ ∗ 0

∗
. . .

. . . ∗
0 ∗ ∗









Computing the closed loop control performance

We are applying the control law u = −Lx to the system

x(t+ 1) = Ax(t) + Bu(t) +w(t)

where w is white noise with variance W. Define

J(L) = E
(

pxp2Q + pup
2
R

)

Then the gradient with respect to a particular element Li j is

(∇LJ)i j = 2RLE [xix
T
j ] + 2B

TE [pix
T
j ]

where p(t) is the stationary solution of the adjoint equation

p(t− 1) = (A− BL)T p(t) − (Q + LTRL)x(t)

A distributed synthesis procedure

1. Measure the states xi(t) for t = tk, . . . , tk + N

2. Simulate the adjoint equation

pi(t− 1) =
∑

j∈Ei

(A− BL)Tji pj(t) − 2(Qixi(t) −
∑

j∈Ei

LTjiR ju j(t))

for t = tk, . . . , tk + N by communicating states between nodes.

3. Calculate the estimates of Euix
T
j and E pix

T
j by

(
Euix

T
j

)

est
= 1
N+1

tk+N∑

t=tk

ui(t)x j(t)
T
(
E pix

T
j

)

est
= 1
N+1

tk+N∑

t=tk

pi(t)x j(t)
T

4. For fixed step length γ > 0, update

L
(k+1)
i j = L

(k)
i j + 2γ Ri

(

Euix
T
j

)

est
+ BTi

(

E pix
T
j

)

est
.

Let tk+1 = tk + N and start over.
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Gradient iteration for the wind park

cost =

14.9887

L =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Gradient iteration for the wind park

cost =

10.5429

L =

0.0327 0.0400 0 0 0

-0.0007 0.0560 0.0527 0 0

0 -0.0069 0.0434 0.0315 0

0 0 -0.0207 0.0131 0.0437

0 0 0 -0.0033 0.0373

Gradient iteration for the wind park

cost =

7.8184

L =

0.0310 0.0595 0 0 0

-0.0168 0.1002 0.1151 0 0

0 0.0345 0.1357 0.0986 0

0 0 0.0636 0.0831 0.1351

0 0 0 0.0102 0.1295

Gradient iteration for the wind park

cost =

7.6192

L =

0.0404 0.0685 0 0 0

-0.0086 0.1076 0.1193 0 0

0 0.0382 0.1421 0.1094 0

0 0 0.0593 0.0991 0.1449

0 0 0 0.0131 0.1348

Gradient iteration for the wind park

cost =

7.4004

L =

0.0576 0.0583 0 0 0

0.0115 0.1224 0.1381 0 0

0 0.0373 0.1500 0.1153 0

0 0 0.0546 0.1068 0.1566

0 0 0 0.0168 0.1594

Gradient iteration for the wind park

cost =

7.2493

L =

0.0712 0.0654 0 0 0

0.0061 0.1224 0.1443 0 0

0 0.0341 0.1550 0.1166 0

0 0 0.0773 0.1409 0.1580

0 0 0 0.0418 0.1601

Gradient iteration for the wind park

cost =

6.9736

L =

0.0936 0.1056 0 0 0

0.0331 0.1775 0.1341 0 0

0 0.0563 0.1500 0.1215 0

0 0 0.0700 0.1564 0.1567

0 0 0 0.0567 0.1646

Gradient iteration for the wind park

cost =

6.8211

L =

0.1390 0.1070 0 0 0

0.0357 0.1821 0.1549 0 0

0 0.0668 0.1797 0.1098 0

0 0 0.0633 0.1685 0.1413

0 0 0 0.0589 0.1754
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Gradient iteration for the wind park

cost =

6.7464

L =

0.1438 0.1208 0 0 0

0.0470 0.2031 0.1632 0 0

0 0.0749 0.1909 0.1046 0

0 0 0.0779 0.1843 0.1388

0 0 0 0.0445 0.1732

Performance Versus Number of Gradient Iterations

0 100 200 300 400 500 600 700 800 900 1000

120

140

160

180

200

220

Expected total cost

 

 
Cost of system, N=2
Cost of system, N=5
Cost of system, N=20
Optimal cost

A distributed controller with 100 agents, using only local data.

Fewer gradient iterations gives faster convergence, but worse

stationary performance.

Control of a Large Deformable Mirror

Case study of a 1 m diameter deformable mirror, for adaptive

optics in large telescopes. Used to correct for aberrations

introduced by the atmosphere.

Using finite element method a spatially discretized model.

M ξ̈+C ξ̇+Kξ = F

◮ 6128 discretization points, each with 6 degrees of freedom.

◮ 372 force actuators.

◮ 1136 position sensors.

Method data and performance

Method data

◮ The sparsity of feedback matrix L is 0.63%.

◮ Time horizon in gradient computation is 1000 time

samples.

◮ 1000 update iterations are performed.

The computation time for the method becomes 16.6 hours.

70% of this time is spent on calculating matrix inversions in the

system simulation.

Control Performance

The controller is used on the mirror when using a simulated

atmosphere. Strehl ratio is a common measure in adaptive

optics. Defined by S = e−(2π ǫ(t)/λ)2 where ǫ(t) is the RMS error

at time t.
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Lecture 4

◮ More on dual decompostion

◮ Distributed MPC

◮ Gradient methods for large-scale systems


