A Course on Distributed Control

Anders Rantzer and Enrico Lovisari

A Course of Six Lectures

1. Introduction
Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance
Control with information delays
Example: Tele-operation
3. Dual decomposition
The saddle algorithm
Example: The Internet protocol

4. Distributed MPC
Example: Water Supply Network

5. Distributed control of positive systems. Consensus algorithms

6. Spatially invariant systems.

Last week: Dual decomposition

mzin[V1(21,22) + Va(zz) + Vi(23,22)]

= max Iguvn [Vl(zl,vl) + Va(z2) + Vs(z3,v3) + p1(z2 —v1) + ps(z2 — Ua)}

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respecive costs

Computer 1:  min,, ,, [V1(21,v1) — p1v1]
Computer 2:  min,, [Va(22) + (p1 + ps)22]

Computer 3: min,, ,, [Vs(2s,vs) — psvs)
while the "market makers” try to maximize their payoffs

Between computer 1 and 2: max,, [p1(zz —v1)]

Between computer 2 and 3:  max,, [p3(z2 — v3)]

A long history

The saddle algorithm:
Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems:
Mesarovic, Macko, Takahara 1970

Singh, Titli 1978

Findeisen 1980

Major application to water supply network:
Carpentier and Cohen, Automatica 1993

Schedule

Mo April 8 at 1315-1430 lecture

Mo April 15 at 1315-1600 lecture and exercises
Fr April 26 at 0815-1100 lecture and exercises
We May 8 at 0915-1200 lecture and exercises
We May 15 at 0915-1200 lecture and exercises
Mo May 20 at 1315-1600 lecture and exercises
Mo May 27 at 1315-1500 exercises
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» More on dual decompostion
» Distributed MPC

» Gradient methods for large-scale systems

The saddle point algorithm

Update in gradient direction:

Computer 1: {: :_—;‘Zl//;;;_'_ i
Computer 1 and 2: pL=23—0v1

Computer 2: 29 = —0Vy/0z9 — p1 — p3
Computer 2 and 3: P3 = 22 — U3

Computer 3: {ZS = —0Vs/0z3

U3 = —8V3/322 + p3

Globally convergent if V; are convex!
[Arrow, Hurwicz, Usawa 1958]

Case study: A water supply network in Paris

[Carpentier and Cohen, Automatica 1993]

» Network serving about 1 million inhabitants
» 20 main water reservoirs

» 30 pumping stations

» 13 peripheral subnetworks

Challenges for control

» Minimize cost for pumping

» Bounds on reservoirs

» Bounds and delays in pumping power
» Prediction of consumption

Optimal control using dual decomposition and saddle algorithm
Subnetworks separated by two variables: Water flow and price



Important Aspects of Dual Decomposition

v

Very weak assumptions on graph

v

No need for central coordination

v

Natural learning procedure is globally convergent

» Unique Nash equilibrium corresponds to global optimum

Conclusion: Ideal for distributed control synthesis

Decomposing the problem

Minimize SN (x(7), u(r))

subject to
x1(1+ 1) Anxl(‘[) Ul(T) ul(T)
X9 (T + 1) A22x2 (T) Ug (T) ug (T)
. = : S I I
x5(7 +1) Aggay(7) vy(7) uy(t)
where x(0) = & and
Vi =304 Ai%)

holds for all i.

Distributed Optimization Procedure

Local optimizations in each node

N
VARIES) =min Y £ (x;(7),ui(7), vi(7))
i»Xi prd

can be coordinated by (local) gradient updates of the prices
) = @) + 7E o) — X iAij (7)]

Future prices included in negotiation for first control input!

Convergence guaranteed under different types of assumptions
on the step size sequence 7*.

Dynamics in vector form

(N) 0 Ay O vy [© B 01w o
ol = . . o ol
x;(1) ! oAyl %) B |w(D) 0
% (0) 0 o | L=(0) 0 o Lui(0) x)
— ~——
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A control problem with graph structure

X1 X2 X7-1 X7

O«——+0=— —O=—0

x1 (7 + 1) Apn Ap 0 x1(1) u1(7)
x2(1+ 1) _ A21 xz(T) " U2(T)
: . A : :
J-1)7
xy(7+1) 0 Agy_yy Ay | [%9(0) uy(7)

J
Minimize the convex objective SN > £;(x;(7), ui(7))
i=1
£(x(7),u(7))
with convex constraints x;(7) € X;, ui(r) € U; and x(0) = .

Decomposing the Cost Function

. T T T
= maXZIunlxIllZ Vi(xi,ui) +p; v — xj (Z#;‘Aﬁpj) ]
13

£ (20,107

so, given the sequences {p;(¢)}Y,, agent i should minimize

what he expects others to charge him
—_——

N N N

Stwu)+ Yol = Yoal (S400)
7=0 7=0 7=0

— —
local cost what he is payed by others

subject to x; (¢ + 1) = A;ix;i(¢) + vi(¢) + u;(¢) and x;(0) = &;.

Distributed Optimality Conditions

Suppose that @;,R; > 0fori =1,..., 7. Then the saddle point
N 7
maxmin 33" [Jaf?, + fuld, + 207 (v — X, A0 ) |

uY
P t=0 i=1

with minimization over system dynamics with x;(0) = «? and
maximization with p(N) = 0, is uniquely defined by

ui(t) = R ' B pi(t) vi(t) = 32 4A1%(t)
pi(t—1) =>;A%p;(t) — Qixi(t)
Notice:

Similarity with Pontryagin’s maximum principle in discrete time
Future prices are relevant for consensus about todays control

Optimality conditions in vector form

Let p;, u; and x; be the vectors of prices, inputs and states for
t=0,1,2,...,N. Then

J

) . 0
l’{ll’lxnz (|xi|zi + |ui|§3l) subject to x; = 3~ A;x; + Bju; + x|
i=1

J
: 2 2 T
= maxmin g 1 {Ixi|Qi + [uilg, — 2p; (Zinij +B;u; — xi> ]
i

Differentiation with respect to p, u and x gives the saddle point

X; = Zinij + Bju; + X?
u; = R 'Bp;
pi = ) AP — @iX;

How do we reach this equilibrium by a distributed algorithm?



Solution by saddle algorithm

The equilibrium equations

X; = Zinij + B;u; + X?
u; = Ri_lepi
pPi =) APj— Qix;

can be solved distributively by iteration:
x; = Q' (Pi - Zin*ij)
u; = R 'Bjp;
Py =pi—7i (Zinij +Bu; +x{ — Xi)

Negotiation of future prices needed to decide first control input!

Idea of Distributed Model Predicitve Control

Replace the original problem by iterative online solutions of the
decentralized finite horizon problem

N
Iag,uul;l Z lf’(xi(t), u;(t),vi(t))
t=0

Two sources of error: Finite horizon and non-optimal prices

~ Y

Fixed or flexible parameters N;, K;, 7;?

Fixed parameters

» Simpler implementation
» Linear plant, quadratic cost gives distributed LTI controllers
» Can be analyzed off-line or on-line

Flexible parameters

» Useful to handle hard state constraints
» Can speed up on-line computations
» Can slow down on-line computations

Hydro Power Valley - modeling

Modeling:

1. Saint Venant PDE (mass and volume balance)
2. Spatial discretization (MOL) = non-linear ODE:s (249
states, 12 inputs, used as simulation model)

3. Linearization, discretization (h=30 min) and model
reduction = MPC-model (32 states, 12 inputs)
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A Distributed MPC Algorithm

At time ¢:

1. Measure the states «x;(¢) locally.
2. Use gradient iterations to generate
» price prediction sequences {p;(¢,7)},

» state prediction sequences {x;(t,7)} ;
> input prediction sequences {u;(¢,7)}Y,

warm-starting from predictions at time ¢ — 1.

3. Apply the inputs u;(¢) = u;(¢,0).

Important parameters: Prediction horizons N;, number of
gradient iterations K; and gradient step sizes ;.

Hydro Power Valley

Benchmark in EU-project HD-MPC coordinated from Delft

Equipped with
10 turbines (T, Tg, D1, ..., Dg, Cyy, Cy¢) and 2 pumps (Cyp, Cop)
3 reservoirs (lakes)
6 dams and reaches

Objectives: Follow power-reference. Avoid flooding.

Hydro Power Valley - control

Difficulties:

» Non-linear power-production p(¢) = u(t)TS;x(¢)
- Linearize around nominal working point (x¢, %),
Ap = ul'SAx + x}'STAu

» Non-linear constraints; uc,uc, = 0,i=1,2
- We have uc, > 0 and uc, <0, penalize —uc,uc,

Cost function:

% (s [] r[azg]oo[r [23) -o

t=

)

with P = [ul'S xTST]



Simulation results

Control horizon: N = 10 (5 hours)

Figure : Power reference tracking (left) and Dam water levels (right)
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Theorem on accuracy of distributed MPC

Suppose x(¢ + 1) = Ax(t) + Bu(t) for ¢ > 0 and for some p that
VOO i (6)) + (1= @)l (xi (1), i 1))
> VP (x(t + 1)) + €04 (si(8), wi8), 0 25Ai5; (8))

for all i and ¢. Then

00

a ex(t),u(t) < V*(F)

t=0

Notice: Failure of inequality hints on update of N; or K;!
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Computing the closed loop control performance

We are applying the control law u = —Lx to the system
x(t+1) = Ax(t) + Bu(t) + w(?)
where w is white noise with variance W. Define

I(L) =E (|xf + lul})

Then the gradient with respect to a particular element L;; is

(Vid)ij = 2RLE [x;x]] + 2B"E [pix]]

where p(t) is the stationary solution of the adjoint equation

p(t—1) = (A—BL)"p(t) - (Q + L"RL)x(z)

Notation

For a distributed accuracy test, let V?(x;) be an upper bound on
in D P (xi(7),ui(7),0i(7))
it £

Such an upper bound can for example be computed by
minimization over a finite time horizon with a terminal constraint
at the origin.

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control
problems via independent decision-makers in every node,
acting in their own interest!

» Optimal strategies independent of global graph structure!
» States are measured only locally
» Linearly complexity (given horizon and iteration scheme)

» Distributed bounds on distance to optimality

Controller Tuning for Large Tri-diagonal Plant

Minimize V =E Y7 ; (Jx:]? + [us[?)

x1(t+1) 06 0.1 0| Txi(¢+1) ui(t) + wi(t)

x2(t+1) _|os x2(t+1) ug(t) + wa(t)
5 01 3 :

xp(t+1) 0 0.3 06| [xn(t+1) un(t) + wn(t)

We will optimize a tri-diagonal control structure

A distributed synthesis procedure

1. Measure the states x;(¢) for ¢ = tp,...,tp + N
2. Simulate the adjoint equation
pit—1) =) (A—BL);;p;(t) — 2(Qixi(t) — Y LLRju;(t))
JEE; JEE;
for t = ¢,...,tx + N by communicating states between nodes.

3. Calculate the estimates of Euiij and Epiij by

B+N t+N
(E uixjr)est =5 Z ui(t)x; ()" (1‘3171'39,'T)est =¥y Z pi(t)x; ()"
t=t} t=ty,
4. For fixed step length ¥ > 0, update
L)) = 1) +2rm (Bus]),, + 87 (Epe])
Let t;41 = tr + N and start over.

est



Gradient iteration for the wind park

Gradient iteration for the wind park

cost =
10.5429
L =
0.0327 0.0400 0 0 0
-0.0007 0.0560 0.0527 0 0
0 -0.0069 0.0434 0.0315 0
0 0 -0.0207 0.0131 0.0437
0 0 0 -0.0033 0.0373

Gradient iteration for the wind park

cost =
7.6192
L =
0.0404 0.0685 0 0 0
-0.0086 0.1076 0.1193 0 0
0 0.0382 0.1421 0.1094 0
0 0 0.0593 0.0991 0.1449
0 0 0 0.0131 0.1348

Gradient iteration for the wind park

cost =
14.9887
L =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Gradient iteration for the wind park
cost =
7.8184
L =
0.0310 0.0595 0 0 0
-0.0168 0.1002 0.1151 0 0
0 0.0345 0.1357 0.0986 0
0 0 0.0636 0.0831 0.1351
0 0 0 0.0102 0.1295
Gradient iteration for the wind park
cost =
7.4004
L =
0.0576 0.0583 0 0 0
0.0115 0.1224 0.1381 0 0
0 0.0373 0.1500 0.1153 0
0 0 0.0546 0.1068 0.1566
0 0 0 0.0168 0.1594
Gradient iteration for the wind park
cost =
6.9736
L =
0.0936 0.1056 0 0 0
0.0331 0.1775 0.1341 0 0
0 0.0563 0.1500 0.1215 0
0 0 0.0700 0.1564 0.1567

0 0 0 0.0567 0.1646

cost =
7.2493
L =
0.0712 0.0654 0 0 0
0.0061 0.1224 0.1443 0 0
0 0.0341 0.1550 0.1166 0
0 0 0.0773 0.1409 0.1580
0 0 0 0.0418 0.1601

Gradient iteration for the wind park

cost =
6.8211
L =
0.1390 0.1070 0 0 0
0.0357 0.1821 0.1549 0 0
0 0.0668 0.1797 0.1098 0
0 0 0.0633 0.1685 0.1413
0 0 0 0.0589 0.1754



Gradient iteration for the wind park

cost =
6.7464
L =
0.1438 0.1208 0 0 0
0.0470 0.2031 0.1632 0 0
0 0.0749 0.1909 0.1046 0
0 0 0.0779 0.1843 0.1388
0 0 0 0.0445 0.1732

Control of a Large Deformable Mirror

Case study of a 1 m diameter deformable mirror, for adaptive
optics in large telescopes. Used to correct for aberrations
introduced by the atmosphere.

Using finite element method a spatially discretized model.

ME+CE+KE=TF

» 6128 discretization points, each with 6 degrees of freedom.

» 372 force actuators.
» 1136 position sensors.

Method data and performance

Method data

» The sparsity of feedback matrix L is 0.63 %.

» Time horizon in gradient computation is 1000 time
samples.

» 1000 update iterations are performed.

The computation time for the method becomes 16.6 hours.
70 % of this time is spent on calculating matrix inversions in the
system simulation.
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Performance Versus Number of Gradient Iterations

Expected total cost

Cost of system, N=2 ||

Cost of system, N=20

T
]

f — — — Cost of system, N=5
|

| —— Optimal cost

120
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A distributed controller with 100 agents, using only local data.
Fewer gradient iterations gives faster convergence, but worse
stationary performance.

Control Performance

The controller is used on the mirror when using a simulated
atmosphere. Strehl ratio is a common measure in adaptive
optics. Defined by S = e~7<(/4)” where (¢) is the RMS error
at time ¢.

Streh ratio
°
@

0 0002 0004 0006 0008 001 0012 0014 0016 0018 0.02
Time in seconds.
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