

Mo	April	8	at	1315-1430	lecture		
Mo	April	15	at	1315-1600	lecture	and	exercises
Fr	April	26	at	0815-1100	lecture	and	exercises
We	May	8	at	0915-1200	lecture	and	exercises
We	May	15	at	0915-1200	lecture	and	exercises
Mo	May	20	at	1315-1600	lecture	and	exercises
Mo	Mav	27	at	1315-1500	exercise	es	

Lecture 4

A Course of Six Lectures

- 1. Introduction Fixed modes, Team theory, Witsenhausen's counterexample
- 2. Partial nestedness and quadratic invariance Control with information delays Example: Tele-operation
- 3. Dual decomposition The saddle algorithm Example: The Internet protocol
- Distributed MPC Example: Water Supply Network
- 5. Distributed control of positive systems. Consensus algorithms
- 6. Spatially invariant systems.

Last week: Dual decomposition

$\min[V_1(z_1, z_2) + V_2(z_2) + V_3(z_3, z_2)]$

 $= \max_{p_1} \min_{z_1, v_1} \left[V_1(z_1, v_1) + V_2(z_2) + V_3(z_3, v_3) + p_1(z_2 - v_1) + p_3(z_2 - v_3)
ight]$

The optimum is a Nash equilibrium of the following game: The three computers try to minimize their respecive costs

while the "market makers" try to maximize their payoffs

Between computer 1 and 2: $\max_{p_1} [p_1(z_2 - v_1)]$ Between computer 2 and 3: $\max_{p_3} [p_3(z_2 - v_3)]$

A long history

The saddle algorithm: Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems: Mesarovic, Macko, Takahara 1970 Singh, Titli 1978 Findeisen 1980

Major application to water supply network: Carpentier and Cohen, Automatica 1993

×.	More	on	dual	decomposition	

- Distributed MPC
- Gradient methods for large-scale systems

The saddle point algorithm

(

017 10

Update in gradient direction:

Computer 1:	$\begin{cases} \dot{z}_1 = -\partial V_1 / \partial z_1 \\ \dot{v}_1 = -\partial V_1 / \partial z_2 + p_1 \end{cases}$
Computer 1 and 2:	$\dot{p}_1 = z_2 - v_1$
Computer 2:	$\dot{z}_2=-\partial V_2/\partial z_2-p_1-p_3$
Computer 2 and 3:	$\dot{p}_3 = z_2 - v_3$
Computer 3:	$egin{cases} \dot{z}_3 = -\partial V_3/\partial z_3 \ \dot{v}_3 = -\partial V_3/\partial z_2 + p_3 \end{cases}$

Globally convergent if V_i are convex! [Arrow, Hurwicz, Usawa 1958]

Case study: A water supply network in Paris

[Carpentier and Cohen, Automatica 1993]

- Network serving about 1 million inhabitants
- > 20 main water reservoirs
- ► 30 pumping stations
- 13 peripheral subnetworks

Challenges for control

- Minimize cost for pumping
- Bounds on reservoirs
- Bounds and delays in pumping power
- Prediction of consumption

Optimal control using dual decomposition and saddle algorithm Subnetworks separated by two variables: Water flow and price

Important Aspects of Dual Decomposition

- Very weak assumptions on graph
- No need for central coordination
- Natural learning procedure is globally convergent
- Unique Nash equilibrium corresponds to global optimum

Conclusion: Ideal for distributed control synthesis

Decomposing the problem

Minimize
$$\sum_{t=0}^{N} \ell(x(\tau), u(\tau))$$

subject to

$$\begin{bmatrix} x_1(\tau+1) \\ x_2(\tau+1) \\ \vdots \\ x_J(\tau+1) \end{bmatrix} = \begin{bmatrix} A_{11}x_1(\tau) \\ A_{22}x_2(\tau) \\ \vdots \\ A_{JJ}x_J(\tau) \end{bmatrix} + \begin{bmatrix} v_1(\tau) \\ v_2(\tau) \\ \vdots \\ v_J(\tau) \end{bmatrix} + \begin{bmatrix} u_1(\tau) \\ u_2(\tau) \\ \vdots \\ u_J(\tau) \end{bmatrix}$$

where $x(0) = \bar{x}$ and

$$v_i = \sum_{j \neq i} A_{ij} x_j$$

holds for all *i*.

Distributed Optimization Procedure

Local optimizations in each node

$$V_{i}^{N,p}(\bar{x}_{i}) = \min_{u_{i},x_{i}} \sum_{\tau=0}^{N} \ell_{i}^{p}(x_{i}(\tau), u_{i}(\tau), v_{i}(\tau))$$

can be coordinated by (local) gradient updates of the prices

$$p_i^{k+1}(au) = p_i^k(au) + \gamma_i^k \Big[v_i^k(au) - \sum_{j
eq i} A_{ij} x_j^k(au) \Big]$$

Future prices included in negotiation for first control input!

Convergence guaranteed under different types of assumptions on the step size sequence γ_i^k .

Dynamics in vector form

A control problem with graph structure

$\begin{bmatrix} x_2(\tau+1) \\ \vdots \\ x_j(\tau+1) \end{bmatrix}$	$=\begin{bmatrix} A_{21}\\ 0 \end{bmatrix}$	· ·.	$\mathbf{A}_{\mathcal{I}(\mathcal{I}-1)}$	$\left. egin{array}{c} A_{(\mathcal{I}-1)\mathcal{I}} \ A_{\mathcal{I}\mathcal{I}} \end{array} ight $	$\begin{bmatrix} x_2(\tau) \\ \vdots \\ x_j(\tau) \end{bmatrix}$	+ $\begin{bmatrix} u_2 \\ \vdots \\ u_j \end{bmatrix}$	τ)
Minimiz	e the conv	vex obje	ective ∑	$\sum_{t=0}^{N} \sum_{i=1}^{\mathcal{I}} \ell_i(t)$	$\frac{(x_i(\tau), u_i)}{(x_i(\tau), u(\tau))}$	(τ))	
			() -			$\langle \alpha \rangle$	_

with convex constraints $x_i(\tau) \in X_i$, $u_i(\tau) \in U_i$ and $x(0) = \bar{x}$.

Decomposing the Cost Function

$$\begin{split} & \max_{p} \min_{u,v,x} \sum_{\tau=0}^{N} \sum_{i=1}^{j} \left[\ell_i(x_i, u_i) + p_i^T \left(v_i - \sum_{j \neq i} A_{ij} x_j \right) \right] \\ &= \max_{p} \sum_{i} \min_{u_i, x_i} \sum_{\tau=0}^{N} \underbrace{\left[\ell_i(x_i, u_i) + p_i^T v_i - x_i^T \left(\sum_{j \neq i} A_{ji}^T p_j \right) \right]}_{\ell_i^p(x_i, u_i, v_i)} \end{split}$$

so, given the sequences $\{p_j(t)\}_{t=0}^N$, agent *i* should minimize

what he expects others to charge him

$$\sum_{\substack{\tau=0\\ \text{ local cost}}}^{N} \ell_i(x_i, u_i) + \sum_{\tau=0}^{N} p_i^T v_i - \sum_{\substack{\tau=0\\ \tau=0}}^{N} x_i^T \left(\sum_{j \neq i} A_{ji}^T p_j \right)$$
what he is payed by others

subject to $x_i(t+1) = A_{ii}x_i(t) + v_i(t) + u_i(t)$ and $x_i(0) = \bar{x}_i$.

Distributed Optimality Conditions

Suppose that $Q_i, R_i > 0$ for $i = 1, ..., \mathcal{I}$. Then the saddle point

$$\max_{p} \min_{u,v,x} \sum_{t=0}^{N} \sum_{i=1}^{j} \left[|x_{i}|_{Q_{i}}^{2} + |u_{i}|_{R_{i}}^{2} + 2p_{i}^{T} \left(v_{i} - \sum_{j \neq i} A_{ij} x_{j} \right) \right]$$

with minimization over system dynamics with $x_i(0) = x_i^0$ and maximization with p(N) = 0, is uniquely defined by

$$u_i(t) = R_i^{-1} B_i^T p_i(t) \qquad v_i(t) = \sum_{j \neq i} A_{ij} x_j(t)$$
$$p_i(t-1) = \sum_j A_{ij}^T p_j(t) - Q_i x_i(t)$$

Notice:

Similarity with Pontryagin's maximum principle in discrete time *Future prices are relevant for consensus about todays control*

Optimality conditions in vector form

Let $\mathbf{p}_i,\mathbf{u}_i$ and \mathbf{x}_i be the vectors of prices, inputs and states for $t=0,1,2,\ldots,N.$ Then

$$\begin{split} \min_{\mathbf{u},\mathbf{x}} \sum_{i=1}^{j} \left(|\mathbf{x}_i|_{Q_i}^2 + |\mathbf{u}_i|_{R_i}^2 \right) \text{ subject to } \mathbf{x}_i &= \sum_j \mathbf{A}_{ij} \mathbf{x}_j + \mathbf{B}_i \mathbf{u}_i + \mathbf{x}_i^0 \\ &= \max_{\mathbf{p}} \min_{\mathbf{u},\mathbf{x}} \sum_{i=1}^{j} \left[|\mathbf{x}_i|_{Q_i}^2 + |\mathbf{u}_i|_{R_i}^2 - 2\mathbf{p}_i^T \left(\sum_j \mathbf{A}_{ij} \mathbf{x}_j + \mathbf{B}_i \mathbf{u}_i - \mathbf{x}_i \right) \right] \end{split}$$

Differentiation with respect to \mathbf{p} , \mathbf{u} and \mathbf{x} gives the saddle point

$$\begin{split} \mathbf{x}_i &= \sum_j \mathbf{A}_{ij} \mathbf{x}_j + \mathbf{B}_i \mathbf{u}_i + \mathbf{x}_i^0 \\ \mathbf{u}_i &= R_i^{-1} \mathbf{B}_i^* \mathbf{p}_i \\ \mathbf{p}_i &= \sum_j \mathbf{A}_{ij}^* \mathbf{p}_j - Q_i \mathbf{x}_i \end{split}$$

How do we reach this equilibrium by a distributed algorithm?

Solution by saddle algorithm

$$\begin{aligned} \mathbf{x}_i &= \sum_j \mathbf{A}_{ij} \mathbf{x}_j + \mathbf{B}_i \mathbf{u}_i + \mathbf{x}_i^0 \\ \mathbf{u}_i &= R_i^{-1} \mathbf{B}_i^* \mathbf{p}_i \\ \mathbf{p}_i &= \sum_j \mathbf{A}_{ij}^* \mathbf{p}_j - Q_i \mathbf{x}_i \end{aligned}$$

can be solved distributively by iteration:

$$\begin{split} \mathbf{x}_i &:= \mathbf{Q}_i^{-1} \left(\mathbf{p}_i - \sum_j \mathbf{A}_{ij}^* \mathbf{p}_j \right) \\ \mathbf{u}_i &= R_i^{-1} \mathbf{B}_i^* \mathbf{p}_i \\ \mathbf{p}_i^+ &:= \mathbf{p}_i - \gamma_i \left(\sum_j \mathbf{A}_{ij} \mathbf{x}_j + \mathbf{B}_i \mathbf{u}_i + \mathbf{x}_i^0 - \mathbf{x}_i \right) \end{split}$$

Negotiation of future prices needed to decide first control input!

Idea of Distributed Model Predicitve Control

Replace the original problem by iterative online solutions of the decentralized finite horizon problem

$$\min_{x_i,u_i}\sum_{t=0}^N l_i^p(x_i(t),u_i(t),v_i(t))$$

Two sources of error: Finite horizon and non-optimal prices

Fixed or flexible parameters N_i , K_i , γ_i ?

Fixed parameters

- Simpler implementation
- Linear plant, quadratic cost gives distributed LTI controllers
- Can be analyzed off-line or on-line

Flexible parameters

- Useful to handle hard state constraints
- Can speed up on-line computations
- Can slow down on-line computations

Hydro Power Valley - modeling

Modeling:

- 1. Saint Venant PDE (mass and volume balance)
- 2. Spatial discretization (MOL) \Rightarrow non-linear ODE:s (249 states, 12 inputs, used as simulation model)
- 3. Linearization, discretization (h=30 min) and model reduction \Rightarrow MPC-model (32 states, 12 inputs)

- More on dual decomposition
- Distributed MPC
- Gradient methods for large-scale systems

A Distributed MPC Algorithm

At time t:

- 1. Measure the states $x_i(t)$ locally.
- 2. Use gradient iterations to generate
 - price prediction sequences $\{p_i(t, \tau)\}_{\tau=0}^N$
 - state prediction sequences $\{x_i(t, \tau)\}$ ► state prediction sequences $\{x_i(t, \tau)\}_{\tau=1}^N$ ► input prediction sequences $\{u_i(t, \tau)\}_{\tau=1}^N$

 - warm-starting from predictions at time t 1.
- **3**. Apply the inputs $u_i(t) = u_i(t, 0)$.

Important parameters: Prediction horizons N_i , number of gradient iterations K_i and gradient step sizes γ_i .

Hydro Power Valley

Benchmark in EU-project HD-MPC coordinated from Delft

Equipped with

10 turbines $(T_1, T_2, D_1, \dots, D_6, C_{1t}, C_{2t})$ and 2 pumps (C_{1p}, C_{2p}) 3 reservoirs (lakes)

6 dams and reaches

Objectives: Follow power-reference. Avoid flooding.

Hydro Power Valley - control

Difficulties:

- ▶ Non-linear power-production $p(t) = u(t)^T S_i x(t)$ - Linearize around nominal working point (x_0, u_0) , $\Delta p = u_0^T S \Delta x + x_0^T S^T \Delta u$
- ▶ Non-linear constraints; $u_{C_{it}}u_{C_{ip}} = 0, i = 1, 2$ - We have $u_{C_{it}} \geq 0$ and $u_{C_{ip}} \leq 0$, penalize $-u_{C_{it}}u_{C_{ip}}$

Cost function:

$$\sum_{t=0}^{N-1} \left(\frac{1}{2} \begin{bmatrix} \Delta x(t) \\ \Delta u(t) \end{bmatrix}^T H \begin{bmatrix} \Delta x(t) \\ \Delta u(t) \end{bmatrix} + \gamma \left\| P \begin{bmatrix} \Delta x(t) \\ \Delta u(t) \end{bmatrix} - \Delta p_{ref}(t) \right\|_{1}$$

with
$$P = [u_0^T S \ x_0^T S^T]$$

Control horizon: N = 10 (5 hours)

Figure : Power reference tracking (left) and Dam water levels (right)

Theorem on accuracy of distributed MPC

Suppose x(t+1) = Ax(t) + Bu(t) for $t \ge 0$ and for some p that

$$\begin{split} & V_i^{N_i(t),p(t,\cdot)}(x_i(t)) + (1-\alpha)\ell_i(x_i(t),u_i(t)) \\ & \geq \bar{V}_i^{p(t,\cdot)}(x_i(t+1)) + \ell_i^{p(t,\cdot)}(x_i(t),u_i(t),\sum_{j\neq i}A_{ij}x_j(t)) \end{split}$$

for all *i* and *t*. Then

$$\alpha \sum_{t=0}^{\infty} \ell(x(t), u(t)) \leq V^{\infty}(\bar{x})$$

Notice: Failure of inequality hints on update of N_i or K_i !

Lecture 4

- More on dual decomposition
- Distributed MPC
- Gradient methods for large-scale systems

For a distributed accuracy test, let $\bar{V}_i^p(x_i)$ be an upper bound on

$$\min_{u_i,v_i,x_i}\sum_{\tau=0}^{\infty}\ell_i^p\big(x_i(\tau),u_i(\tau),v_i(\tau)\big)$$

Such an upper bound can for example be computed by minimization over a finite time horizon with a terminal constraint at the origin.

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control problems via independent decision-makers in every node, acting in their own interest!

- Optimal strategies independent of global graph structure!
- States are measured only locally
- Linearly complexity (given horizon and iteration scheme)
- Distributed bounds on distance to optimality

Controller Tuning for Large Tri-diagonal Plant

Minimize $V = \mathbf{E} \sum_{i=1}^{n} (|x_i|^2 + |u_i|^2)$

$$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_n(t+1) \end{bmatrix} = \begin{bmatrix} 0.6 & 0.1 & 0 \\ 0.3 & \ddots & \ddots \\ & \ddots & \ddots & 0.1 \\ 0 & 0.3 & 0.6 \end{bmatrix} \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_n(t+1) \end{bmatrix} + \begin{bmatrix} u_1(t) + w_1(t) \\ u_2(t) + w_2(t) \\ \vdots \\ u_n(t) + w_n(t) \end{bmatrix}$$

We will optimize a tri-diagonal control structure

$$\bar{L} = \begin{bmatrix} * & * & & 0 \\ * & & \ddots & \\ & \ddots & & * \\ 0 & & * & * \end{bmatrix}$$

A distributed synthesis procedure

- 1. Measure the states $x_i(t)$ for $t = t_k, \ldots, t_k + N$
- 2. Simulate the adjoint equation

$$p_i(t-1) = \sum_{j \in E_i} (A - BL)_{ji}^T p_j(t) - 2(Q_i x_i(t) - \sum_{j \in E_i} L_j^T R_j u_j(t))$$

- for $t = t_k, \ldots, t_k + N$ by communicating states between nodes.
- 3. Calculate the estimates of $\mathbf{E} u_i x_j^T$ and $\mathbf{E} p_i x_j^T$ by

$$\left(\mathbf{E}\,u_{i}x_{j}^{T}\right)_{\text{est}} = \frac{1}{N+1}\sum_{t=t_{k}}^{t_{k}+N}u_{i}(t)x_{j}(t)^{T} \quad \left(\mathbf{E}\,p_{i}x_{j}^{T}\right)_{\text{est}} = \frac{1}{N+1}\sum_{t=t_{k}}^{t_{k}+N}p_{i}(t)x_{j}(t)^{T}$$

4. For fixed step length $\gamma > 0$, update $L_{ij}^{(k+1)} = L_{ij}^{(k)} + 2\gamma R_i \left(\mathbf{E} u_i x_j^T\right)_{\text{est}} + B_i^T \left(\mathbf{E} p_i x_j^T\right)_{\text{est}}.$ Let $t_{k+1} = t_k + N$ and start over.

Computing the closed loop control performance

We are applying the control law u = -Lx to the system

$$x(t+1) = Ax(t) + Bu(t) + w(t)$$

where w is white noise with variance W. Define

$$J(L) = \mathbf{E} \left(|x|_Q^2 + |u|_R^2 \right)$$

Then the gradient with respect to a particular element L_{ij} is

$$(\nabla_L J)_{ij} = 2RL\mathbf{E}\left[x_i x_i^T\right] + 2B^T \mathbf{E}\left[p_i x_i^T\right]$$

where p(t) is the stationary solution of the adjoint equation

$$p(t-1) = (A - BL)^T p(t) - (Q + L^T RL)x(t)$$

cost =			cost =	cost =						
14.9887				10.5425	10.5429					
L =					L =					
0	0	0	0	0	0.0327	0.0400	0	0	0	
0	0	0	0	0	-0.0007	0.0560	0.0527	0	0	
0	0	0	0	0	0	-0.0069	0.0434	0.0315	0	
0	0	0	0	0	0	0	-0.0207	0.0131	0.0437	
0	0	0	0	0	0	0	0	-0.0033	0.0373	

Grad	lient itera	Gra	dient			
cost =					cost =	
7.8184					7.6192	
L =					L =	
0.0310	0.0595	0	0	0	0.0404	0.0
-0.0168	0.1002	0.1151	0	0	-0.0086	0.1
0	0.0345	0.1357	0.0986	0	0	0.0
0	0	0.0636	0.0831	0.1351	0	
0	0	0	0.0102	0.1295	0	

Gradient iteration for the wind park

cost =							
7.6192							
L =							
0.0404	0.0685	0	0	0			
-0.0086	0.1076	0.1193	0	0			
0	0.0382	0.1421	0.1094	0			
0	0	0.0593	0.0991	0.1449			
0	0	0	0.0131	0.1348			
Gradient iteration for the wind park							

cos	t =					
	7.4004					
L =						
	0.0576	0.0583	0	0	0	
	0.0115	0.1224	0.1381	0	0	
	0	0.0373	0.1500	0.1153	0	
	0	0	0.0546	0.1068	0.1566	
	0	0	0	0.0168	0.1594	

Gradient iteration for the wind park

	Gra	dient iter	ation for	r the win	d park	
						_
cost	t =					со
	6.9736					
L =						L
	0.0936	0.1056	0	0	0	
	0.0331	0.1775	0.1341	0	0	
	0	0.0563	0.1500	0.1215	0	
	0	0	0.0700	0.1564	0.1567	
	0	0	0	0.0567	0.1646	

cos	t =					
	7.2493					
L =						
	0.0712	0.0654	0	0	0	
	0.0061	0.1224	0.1443	0	0	
	0	0.0341	0.1550	0.1166	0	
	0	0	0.0773	0.1409	0.1580	
	0	0	0	0.0418	0.1601	

Gradient iteration for the wind park

cost =	cost =							
6.8211								
L =								
0.1390	0.1070	0	0	0				
0.0357	0.1821	0.1549	0	0				
0	0.0668	0.1797	0.1098	0				
0	0	0.0633	0.1685	0.1413				
0	0	0	0.0589	0.1754				

Performance Versus Number of Gradient Iterations

cost =				
6.7464				
L =				
0.1438	0.1208	0	0	0
0.0470	0.2031	0.1632	0	0
0	0.0749	0.1909	0.1046	0
0	0	0.0779	0.1843	0.1388
0	0	0	0.0445	0.1732

Control of a Large Deformable Mirror

Case study of a 1 m diameter deformable mirror, for adaptive optics in large telescopes. Used to correct for aberrations introduced by the atmosphere.

Using finite element method a spatially discretized model.

$$\mathcal{M}\ddot{\boldsymbol{\xi}} + \mathcal{C}\dot{\boldsymbol{\xi}} + \mathcal{K}\boldsymbol{\xi} = \boldsymbol{F}$$

- ▶ 6128 discretization points, each with 6 degrees of freedom.
- 372 force actuators.
- 1136 position sensors.

Method data and performance

Method data

- The sparsity of feedback matrix L is 0.63%.
- Time horizon in gradient computation is 1000 time samples.
- 1000 update iterations are performed.

The computation time for the method becomes 16.6 hours. 70% of this time is spent on calculating matrix inversions in the system simulation.

Lecture 4

- More on dual decomposition
- Distributed MPC
- Gradient methods for large-scale systems

A distributed controller with 100 agents, using only local data. Fewer gradient iterations gives faster convergence, but worse stationary performance.

Control Performance

The controller is used on the mirror when using a simulated atmosphere. Strehl ratio is a common measure in adaptive optics. Defined by $S = e^{-(2\pi\epsilon(t)/\lambda)^2}$ where $\epsilon(t)$ is the RMS error at time *t*.

