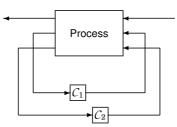


| Мо | April | 8  | at | 1315-1430 | lecture               |  |
|----|-------|----|----|-----------|-----------------------|--|
| Mo | April | 15 | at | 1315-1600 | lecture and exercises |  |
| Fr | April | 26 | at | 0815-1100 | lecture and exercises |  |
| We | May   | 8  | at | 0915-1200 | lecture and exercises |  |
| We | May   | 15 | at | 0915-1200 | lecture and exercises |  |
| Mo | May   | 20 | at | 1315-1600 | lecture and exercises |  |
| Mo | May   | 27 | at | 1315-1500 | exercises             |  |

### **Control with Information Constraints**



Can we stabilize the system? Are the optimal controllers linear? Can they be computed efficiently?

These questions will be adressed during the first two lectures.

# A Course of Six Lectures

- 1. Introduction Fixed modes, Team theory, Witsenhausen's counterexample
- Partial nestedness and quadratic invariance Control with information delays Example: Tele-operation
- 3. Dual decomposition The saddle algorithm Example: The Internet protocol
- 4. Distributed MPC Example: Water Supply Network
- 5. Distributed control of positive systems. Consensus algorithms
- 6. Spatially invariant systems.

### 50 year old idea: Dual decomposition

 $\min_{z}[V_1(z_1,z_2)+V_2(z_2)+V_3(z_3,z_2)]$ 

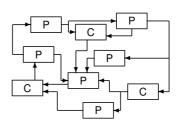
 $= \max \min_{z_1, v_2} \left[ V_1(z_1, v_1) + V_2(z_2) + V_3(z_3, v_3) + p_1(z_2 - v_1) + p_3(z_2 - v_3) \right]$ 

The optimum is a Nash equilibrium of the following game: The three computers try to minimize their respecive costs

while the "market makers" try to maximize their payoffs

Between computer 1 and 2:  $\max_{p_1} [p_1(z_2 - v_1)]$ Between computer 2 and 3:  $\max_{p_3} [p_3(z_2 - v_3)]$ 

### **Control Synthesis from a Decentralized Perspective**



Can local controllers be designed without knowledge of the entire system?

What level of performance can be achieved this way?

This will be the main topic in of lecture 3-4.

## **Outline of Lecture 3**

- Dual decomposition and the saddle algorithm [Arrow/Hurwicz/Uzawa 1958]
- Example: The TCP protocol [Low/Paganini/Doyle 2002]

### **Decentralized Bounds on Suboptimality**

Given any  $p_1, p_3, \bar{z}_1, \bar{z}_2, \bar{z}_3$ , the distributed test

$$egin{aligned} V_1(ar{z}_1,ar{z}_2) - p_1ar{z}_2 &\leq lpha \min_{ar{z}_1,v_1} \left[V_1(z_1,v_1) - p_1v_1
ight] \ V_2(ar{z}_2) + (p_1 + p_3)ar{z}_2 &\leq lpha \min_{ar{z}_2} \left[V_2(z_2) + (p_1 + p_3)z_2
ight] \ V_3(ar{z}_3,ar{z}_2) - p_3ar{z}_2 &\leq lpha \min_{ar{z}_2,v_1} \left[V_3(z_3,v_3) - p_3v_3
ight] \end{aligned}$$

implies that the globally optimal cost  $J^*$  is bounded as

$$J^* \le V_1(\bar{z}_1, \bar{z}_2) + V_2(\bar{z}_2) + V_3(\bar{z}_3, \bar{z}_2) \le \alpha J^*$$

Proof: Add both sides up!

### The saddle point algorithm

#### Update in gradient direction:

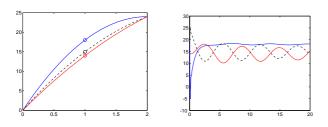
| Computer 1:       | $\begin{cases} \dot{z}_1 = -\partial V_1 / \partial z_1 \\ \dot{v}_1 = -\partial V_1 / \partial z_2 + p_1 \end{cases}$ |
|-------------------|------------------------------------------------------------------------------------------------------------------------|
| Computer 1 and 2: | $\dot{p}_1 = z_2 - v_1$                                                                                                |
| Computer 2:       | $\dot{z}_2=-\partial V_2/\partial z_2-p_1-p_3$                                                                         |
| Computer 2 and 3: | $\dot{p}_3 = z_2 - v_3$                                                                                                |
| Computer 3:       | $egin{cases} \dot{z}_3 = -\partial V_3/\partial z_3 \ \dot{v}_3 = -\partial V_3/\partial z_2 + p_3 \end{cases}$        |

Globally convergent if  $V_i$  are convex! [Arrow, Hurwicz, Usawa 1958]

# Example: Three Trading Units (The Beer Game)

| Consumer utility<br>Retailer utility | $egin{aligned} &U_1(w_1+u_{11})-p_1u_{11}\ &U_2(w_2-u_{21}+u_{22})+p_1u_{21}-p_2u_{22} \end{aligned}$                                |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Factory utility                      | $U_3(w_3 - u_{32}) + p_2 u_{32}$                                                                                                     |
| Consumer demand:                     | $\dot{u}_{11} = -U_1'(w_1+u_{11})-p_1$                                                                                               |
| Consumer market:                     | $\dot{p}_1 = u_{11} - u_{21}$                                                                                                        |
| Retailer supply and deman            | d: $\begin{cases} \dot{u}_{21} = U_2'(w_2 - u_{21} + u_{22}) + p_1 \\ \dot{u}_{22} = -U_2'(w_2 - u_{21} + u_{22}) - p_2 \end{cases}$ |
| Factory market:                      | $\dot{p}_2 = u_{22} - u_{32}$                                                                                                        |
| Factory supply rate:                 | $\dot{u}_{32} = -U_3'(w_3-u_{32})+p_2$                                                                                               |
|                                      |                                                                                                                                      |

### Gradient dynamics tend to be oscillative



# Global stability of discrete saddle algorithm

$$\min_{Rx=0} U(x) = \max_{p} \min_{x} [U(x) + p^T Rx]$$

The discrete time saddle algorithm

$$\begin{cases} x^{+} = x - G\left[(\partial U / \partial x)^{T} + R^{T} p\right] \\ p^{+} = p + HRx \end{cases}$$

is stable for convex U provided that G, H > 0 and

$$3R^T HR < -(\partial^2 U/\partial x^2) < \frac{1}{2}G^{-1}$$

**Exercise:** Prove this using the Lyapunov function  $V = |x - x^*|_{G^{-1}}^2 + |p - p^*|_{H^{-1}}^2 - 2(p - p^*)^T R(x - x^*)$ 

#### Global stability of saddle algorithm

$$\min_{Rx=0} V(x) = \max_{p} \min_{x} [V(x) + p^{T}Rx]$$

 $\begin{cases} \dot{x} = -G\left[(\partial V/\partial x)^T + R^T p\right] \\ \dot{p} = HRx \end{cases} \qquad \qquad G, H > 0 \text{ adjustment rates}$ 

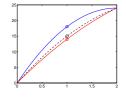
$$\begin{split} \begin{bmatrix} \ddot{x} \\ \ddot{p} \end{bmatrix} &= \begin{bmatrix} -G(\partial^2 V/\partial x^2) & -GR^T \\ HR & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{p} \end{bmatrix} \\ \mathbf{V} &= |\dot{x}|_{G^{-1}}^2 + |\dot{p}|_{H^{-1}}^2 \\ \frac{d}{dt} \mathbf{V} &= \dot{x}^T G^{-1} \ddot{x} + \dot{p}^T H^{-1} \ddot{p} \\ &= -\dot{x}^T \left[ (\partial^2 V/\partial x^2) \dot{x} + R^T \dot{p} \right] + \dot{p}^T (R\dot{x}) \end{split}$$

 $= -\dot{x}^T (\partial^2 V / \partial x^2) \dot{x} \leq 0$ 

### **Example: Three Trading Units**

Three utility functions plotted together with possible equilibrium point.

 $U_1(x_1) = 24 - 6(x_1 - 2)^2$  $U_2(x_2) = 27 - 3(x_2 - 3)^2$  $U_3(x_2) = 32 - 2(x_3 - 4)^2$ 



When prices and quantities have settled, there is no trade incentive. The equilibrium is a global optimum (social welfare):

 $\max_{u_1, u_2} [U_1(w_1 + u_1) + U_2(w_2 - u_1 + u_2) + U_3(w_3 - u_2)]$ 

This is a Nash equilibrium for the game with five players, three agents and two markets.

#### **Network congestion control**



Maximize  $U_i(x)$  subject to  $\sum_i R_{li} x_i \leq c_l$ . Introduce link prices  $p_l$ :

$$\begin{split} \max_{x_i \geq 0} \sum_i U_i(x_i) &= \min_{p_l \geq 0} \max_{x_i \geq 0} \sum_i \left[ U_i(x_i) - \sum_l p_l \left( R_{li} x_i - c_l \right) \right] \\ &= \min_{p_l \geq 0} \max_{x_i \geq 0} \sum_i \left[ U_i(x_i) - x_i \sum_l p_l R_{li} \right] + \sum_l p_l c_l \end{split}$$

To update the send rate  $x_i$ , we need to know  $\sum_l p_l R_{li}$ . To update the price  $p_l$ , we need  $R_{li}x_i - c_l$ . Are these quantities locally known?

#### What did we achieve?

- Optimality test inherits structure of original problem
- Prices show the relative importance of different terms
- Suboptimality bounds indicate where things went wrong
- Sparsity structure useful for efficient computations