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A Course on Distributed Control

Anders Rantzer and Enrico Lovisari

Schedule

Mo April 8 at 1315-1430 lecture

Mo April 15 at 1315-1600 lecture and exercises

Fr April 26 at 0815-1100 lecture and exercises

We May 8 at 0915-1200 lecture and exercises

We May 15 at 0915-1200 lecture and exercises

Mo May 20 at 1315-1600 lecture and exercises

Mo May 27 at 1315-1500 exercises

Control with Information Constraints
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Can we stabilize the system? Are the optimal controllers

linear? Can they be computed efficiently?

These questions will be adressed during the first two lectures.

Control Synthesis from a Decentralized Perspective
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Can local controllers be designed without knowledge of the

entire system?

What level of performance can be achieved this way?

This will be the main topic in of lecture 3-4.

A Course of Six Lectures

1. Introduction

Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance

Control with information delays

Example: Tele-operation

3. Dual decomposition

The saddle algorithm

Example: The Internet protocol

4. Distributed MPC

Example: Water Supply Network

5. Distributed control of positive systems. Consensus algorithms

6. Spatially invariant systems.

Outline of Lecture 3

◮ Dual decomposition and the saddle algorithm

[Arrow/Hurwicz/Uzawa 1958]

◮ Example: The TCP protocol [Low/Paganini/Doyle 2002]

50 year old idea: Dual decomposition

min
zi
[V1(z1, z2) + V2(z2) + V3(z3, z2)]

= max
pi
min
zi,vi

[

V1(z1,v1) + V2(z2) + V3(z3,v3) + p1(z2 − v1) + p3(z2 − v3)
]

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respecive costs

Computer 1: minz1,v1
[

V1(z1,v1) − p1v1
]

Computer 2: minz2
[

V2(z2) + (p1 + p3)z2
]

Computer 3: minz3,v3
[

V3(z3,v3) − p3v3
]

while the ”market makers” try to maximize their payoffs

Between computer 1 and 2: maxp1 [p1(z2 − v1)]

Between computer 2 and 3: maxp3 [p3(z2 − v3)]

Decentralized Bounds on Suboptimality

Given any p1, p3, z̄1, z̄2, z̄3, the distributed test

V1(z̄1, z̄2) − p1 z̄2 ≤ α min
z1,v1

[V1(z1,v1) − p1v1]

V2(z̄2) + (p1 + p3)z̄2 ≤ α min
z2
[V2(z2) + (p1 + p3)z2]

V3(z̄3, z̄2) − p3 z̄2 ≤ α min
z3,v3

[V3(z3,v3) − p3v3]

implies that the globally optimal cost J∗ is bounded as

J∗ ≤ V1(z̄1, z̄2) + V2(z̄2) + V3(z̄3, z̄2) ≤ α J∗

Proof: Add both sides up!
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The saddle point algorithm

Update in gradient direction:

Computer 1:

{

ż1 = −�V1/�z1

v̇1 = −�V1/�z2 + p1

Computer 1 and 2: ṗ1 = z2 − v1

Computer 2: ż2 = −�V2/�z2 − p1 − p3

Computer 2 and 3: ṗ3 = z2 − v3

Computer 3:

{

ż3 = −�V3/�z3

v̇3 = −�V3/�z2 + p3

Globally convergent if Vi are convex!

[Arrow, Hurwicz, Usawa 1958]

Global stability of saddle algorithm

min
Rx=0

V (x) = max
p
min
x
[V (x) + pTRx]

{

ẋ = −G
[

(�V/�x)T + RT p
]

ṗ = HRx
G,H > 0 adjustment rates

[

ẍ

p̈

]

=

[

−G(�2V/�x2) −GRT

HR 0

] [

ẋ

ṗ

]

V = pẋp2G−1 + pṗp
2
H−1

d

dt
V = ẋTG−1 ẍ + ṗTH−1 p̈

= −ẋT
[

(�2V/�x2)ẋ + RT ṗ
]

+ ṗT(Rẋ)

= −ẋT(�2V/�x2)ẋ ≤ 0

Example: Three Trading Units (The Beer Game)

Consumer utility U1(w1 + u11) − p1u11

Retailer utility U2(w2 − u21 + u22) + p1u21 − p2u22

Factory utility U3(w3 − u32) + p2u32

Consumer demand: u̇11 = −U
′
1(w1 + u11) − p1

Consumer market: ṗ1 = u11 − u21

Retailer supply and demand:

{

u̇21 = U
′
2(w2 − u21 + u22) + p1

u̇22 = −U
′
2(w2 − u21 + u22) − p2

Factory market: ṗ2 = u22 − u32

Factory supply rate: u̇32 = −U
′
3(w3 − u32) + p2

Example: Three Trading Units

Three utility functions plotted together with possible equilibrium point.

U1(x1) = 24− 6(x1 − 2)
2

U2(x2) = 27− 3(x2 − 3)
2

U3(x2) = 32− 2(x3 − 4)
2
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When prices and quantities have settled, there is no trade incentive.

The equilibrium is a global optimum (social welfare):

max
u1,u2

[U1(w1 + u1) + U2(w2 − u1 + u2) + U3(w3 − u2)]

This is a Nash equilibrium for the game with five players, three agents

and two markets.

Gradient dynamics tend to be oscillative
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Network congestion control

Maximize Ui(x) subject to
∑

i Rlixi ≤ cl. Introduce link prices pl:

max
xi≥0

∑

i

Ui(xi) = min
pl≥0
max
xi≥0

∑

i

[

Ui(xi) −
∑

l

pl (Rlixi − cl)

]

= min
pl≥0
max
xi≥0

∑

i

[

Ui(xi) − xi
∑

l

plRli

]

+
∑

l

plcl

To update the send rate xi, we need to know
∑

l plRli. To update the

price pl, we need Rlixi − cl. Are these quantities locally known?

Global stability of discrete saddle algorithm

min
Rx=0

U(x) = max
p
min
x
[U(x) + pTRx]

The discrete time saddle algorithm

{

x+ = x − G
[

(�U/�x)T + RT p
]

p+ = p+ HRx

is stable for convex U provided that G,H > 0 and

3RTHR < −(�2U/�x2) <
1

3
G−1

Exercise: Prove this using the Lyapunov function

V = px − x∗p2
G−1

+ pp− p∗p2
H−1

− 2(p− p∗)TR(x − x∗)

What did we achieve?

◮ Optimality test inherits structure of original problem

◮ Prices show the relative importance of different terms

◮ Suboptimality bounds indicate where things went wrong

◮ Sparsity structure useful for efficient computations


