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A Course on Distributed Control

Anders Rantzer and Enrico Lovisari

Schedule

Mo April 8 at 1315-1430 lecture

Mo April 15 at 1315-1600 lecture and exercises

Fr April 26 at 0915-1200 lecture and exercises

Tu May 7 at 1315-1600 lecture and exercises

Mo May 13 at 1315-1600 lecture and exercises

Mo May 20 at 1315-1600 lecture and exercises

Mo May 27 at 1315-1500 exercises

Control with Information Constraints
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Can we stabilize the system? Are the optimal controllers

linear? Can they be computed efficiently?

These questions will be adressed during the first two lectures.

Control Synthesis from a Decentralized Perspective
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Can local controllers be designed without knowledge of the

entire system?

What level of performance can be achieved this way?

This will be the main topic in of lecture 3-4.

A Course of Six Lectures

1. Introduction

Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance

Control with information delays

Example: Tele-operation

3. Dual decomposition

The saddle algorithm

Example: The Internet protocol

4. Distributed MPC

Example: Water Supply Network

5. Spatially invariant systems.

6. Distributed control of positive systems. Consensus algorithms

Outline of Lecture 2

◮ Partial Nestedness [Ho/Chu 1972]

◮ Quadratic Invariance [Rotkowitz/Lall 2006]

◮ Example: Tele-operation [Kristalny/Cho 2012]

An incentive for signalling
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If one controller has information useful for the other, then there

is an incentive to encode this information in the control inputs.

This “signalling” creates complicated nonlinear control laws.

The signalling incentive sometimes disappears!
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[Yu-Chi Ho and K’ai-Ching Chu (1972)]:

If a decision-makers action affects our information, then

knowing what he knows will yield linear optimal solutions

The condition is called “partial nestedness”.
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Standard linear quadratic optimal control

Find u = Lx to minimize E(pxp2 + pup2) when

x(k+ 1) = Ax(k) + Bu(k) +w(k) Ew(k)w(k)T = I

Notation:

[
Xxx Xxu
Xux Xuu

]

= E

[
x

u

] [
x

u

]T

Solution by convex optimization:

Minimize trace (Xxx) + trace (Xuu)

subject to Xxx =
[
A B I

]





Xxx Xxu 0

Xux Xuu 0

0 0 I
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AT

BT

I
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Then put u(k) = Lx(k) where LXxx = Xux.

Control with disturbance measurements

Find u = Lx + Mw to minimize E(pxp2 + pup2) when

x(k+ 1) = Ax(k) + Bu(k) +w(k) Ew(k)w(k)T = I

Solution by convex optimization:

Minimize trace (Xxx) + trace (Xuu)

subject to Xxx =
[
A B I

]





Xxx Xxu 0

Xux Xuu Xuw
0 Xwu I
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Then put u(k) = XuxX
−1
xx x(k) + Xuww(k)

A one-step delay information pattern

Find u =

[
L1x + M1w1
L2x + M2w2

]

to minimize E(pxp2 + pup2) when w =

[
w1
w2

]

and

x(k+ 1) = Ax(k) + Bu(k) +w(k) Ew(k)w(k)T = I

Is the problem partially nested?

A one-step delay information pattern

Find u = Lx +
[
M1 0

0 M2

]

w to minimize E(pxp2 + pup2) when

x(k+ 1) = Ax(k) + Bu(k) +w(k) Ew(k)w(k)T = I

Solution by convex optimization:

Minimize trace (Xxx) + trace (Xuu)

subject to Xxx =
[
A B I

]





Xxx Xxu 0

Xux Xuu Xuw
0 Xwu I
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Xuw = X
T
wu =

[
M1 0

0 M2

]

Then put u(k) = XuxX
−1
xx x(k) + Xuww(k)

A Team Problem with Delay Constraints

x1,u1

x2,u2

x3

x4

Find µ1,µ2 to minimize

the stationary variance

E

∑

i, j

(pxip
2 + pu j p

2)







x1(k+ 1)
x2(k+ 1)
x3(k+ 1)
x4(k+ 1)






=







Φ11 0 Φ13 0

Φ21 Φ22 Φ23 0

0 Φ32 Φ33 Φ34
0 0 Φ43 Φ44













x1(k)
x2(k)
x3(k)
x4(k)






+







Γ1u1(k) +w1(k)
Γ2u2(k) +w2(k)

w3(k)
w4(k)







u1(k) = µ1

(

y1(k), y2(k− 2), y3(k− 1), y4(k− 2)
)

u2(k) = µ2

(

y1(k− 1), y2(k), y3(k− 1), y4(k− 2)
) yi(k) =













Cixi(k)
Cixi(k− 1)
Cixi(k− 2)

.

.
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Is it partially nested?

Outline of Lecture 2

◮ Partial Nestedness [Ho/Chu 1972]

◮ Quadratic Invariance [Rotkowitz/Lall 2006]

◮ Example: Tele-operation [Kristalny/Cho 2012]

The Youla parametrization for stable plants

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

]

C(s)

� �

�

-
control inputs u

controlled variables z

measurements y

distubances w

Original problem:

Minimize qPzw − PzuC(I − PyuC)
−1Pywq over stabilizing C

Equivalent problem:

Minimize qPzw + PzuQPywq over stable Q

Synthesis by convex optimization

A general control synthesis problem can be stated as a convex

optimization problem in the variables Q0, . . . ,Qm. The problem

has a quadratic objective, with linear and quadratic constraints:

MinimizeQk
∫∞
−∞ pPzw(iω ) + Pzu(iω )

Q(iω )
︷ ︸︸ ︷
∑

k

Qkφk(iω ) Pyw(iω )p
2dω

}

quadratic objective

subject to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

}

linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
}

quadratic constraints

Once the variables Q0, . . . ,Qm have been optimized, the

controller is obtained as C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)
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Youla parameterization with constraints

[Rotkowitz, Lall (2002)]: Let S be a linear space.

Original problem:

MinimizeC∈S qPzw − PzuC(I − PyuC)
−1Pywq

Modified problem:

MinimizeQ∈S qPzw + PzuQPywq

Condition for equivalence between the two:

The two are equivalent if S is quadratically invariant under Pyu, i.e.

CPyuC ∈ S for all C ∈ S

A Team Problem with Delay Constraints

x1,u1

x2,u2

x3

x4

Find µ1,µ2 to minimize

the stationary variance

E

∑

i, j

(pxip
2 + pu j p

2)







x1(k+ 1)
x2(k+ 1)
x3(k+ 1)
x4(k+ 1)






=







Φ11 0 Φ13 0

Φ21 Φ22 Φ23 0

0 Φ32 Φ33 Φ34
0 0 Φ43 Φ44
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x1(k)
x2(k)
x3(k)
x4(k)




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
+




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Γ1u1(k) +w1(k)
Γ2u2(k) +w2(k)

w3(k)
w4(k)







u1(k) = µ1

(

y1(k), y2(k− 2), y3(k− 1), y4(k− 2)
)

u2(k) = µ2

(

y1(k− 1), y2(k), y3(k− 1), y4(k− 2)
) yi(k) =


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Cixi(k)
Cixi(k− 1)
Cixi(k− 2)
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Is it quadratically invariant?

Convexity in distributed control

x1,u1

x2,u2

x3

x4

Minimize qPzw + PzuQPywq
2 where

Q(z) = C(I − PyuC)
−1

Pyu(z) =







p11(z) z−2p12(z)
z−1p21(z) p22(z)
z−2p31(z) z−1p32(z)
z−3p41(z) z−2p42(z)







C(z) =

[
c11(z) z−2c12(z) z−1c13(z) z−2c14(z)
z−1c21(z) c22(z) z−1c23(z) z−2c24(z)

]

Convexity in distributed control

[Bamieh, Voulgaris (2002)] and [Rotkowitz, Lall (2002)]:

The distributed control synthesis problem becomes convex

when communication links propagate information at least as

fast as the process does.

Mini-problem: Irrigation system

x1

x2

x3

w1

w2

w3

u1

u2

u3







x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ 0 0 0

∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1 +w1
B2u2 +w2
B3u3 +w3
B4u4 +w4







What control structures are quadratically invariant?
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u2(t)
u3(t)
u4(t)
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x4(t)













u1(t)
u2(t)
u3(t)
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
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Outline of Lecture 2

◮ Partial Nestedness [Ho/Chu 1972]

◮ Quadratic Invariance [Rotkowitz/Lall 2006]

◮ Example: Tele-operation [Kristalny/Cho 2012]

Tele-operation Next Lecture

Lecture 2 Partial nestedness and quadratic invariance

Control with information delays

Lecture 3 Dual decomposition

The saddle algorithm

Example: The Internet protocol


