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Abstract This article solves the problem of how to obtain a zero-order hold sampled version
of a staie space system containing several time delays at arbitrary positions. No agsumption
is made on commensurability of the time delays. It is shown that the condition for obtaining
2 finite dimensional sampled system for all sampling pericds is that there are ‘no signal
loops’ around any of the time delays, A short and constructive algorithm is presented
for sampling such systems. Al calculations can be performed using standard programs for

sampling systems.
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1. INTRCDUCTION

Many industrial processes contain several time
delays. This is for instance common in chemical
engineering processes, where time delays results
from piping between units, The time behavior of
such systems can often be adequately described
by linear, continuous time, differential-difference
equations (DDEs). Such equations have been
the subject of much research, see e.g. [Choksy,
1960];[Marshall, 1979].

The control of linear time-delay systems is gener-
ally difficult both in theory and in practice. Often
timme delays put severe restrictions on achievable
feedback performance. It is therefore important to
have good methods for analysis and design of such
systems, One possibility is to sample the system
and use digital control, As we will see, it can then
happen that the sampled system becomes finite di-
mensional, Further analysis and synthesis are then
much simplified.

A continuous time linear system with a time delay
is an infinite dimensional system, To model the de-
lay one must store a function of time over a time
interval equal the length of the time delay. It was
therefore a surprise when it was found that the
sampled version of the system in Fig 1 is finite-
dimensional. This was noted as soon as comput-
ers were being used to implement control systems
in the 1950s [Ragazzini and Franklin, 1958]. The
method is by now classical and formulas appear
in most text books, see e.g. [Astrdm and Witten-
mark, 1990]. Algorithms are also included in most
software packages for digital control. It is straight-
forward using these results to sample a multivari-
able linear system with time delays in control vari-
ables only. The solution consists of storing state
variables and delayed input signals in a finite num-
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Fig. 1 Hold cirenit, time delay and linear aystem

ber of sampling points and showing that this in-
formation suffices to update the system equations.

Note that state variables often have physical in-
terpretations. To keep the engineering intuition
from the continuous time model, it is advanta-
geous to obtain a sampled aystem from which the
state variables at the sampling points can be ob-
tained.

Sampling of systems with internal time delays
has received much less attention in the literature
and few results have been obtained. The problem
has only been solved for simple systems. The
setup in Fig 1 was slightly generalized in [Araki
et al., 1984], [Wittenmark, 1985], [Fujinaka and
Araki, 1987]. As a result the system in Fig 2 can
also be sampled. Here the time delay is situated
between two linear systems. The sampled system
is finite dimensional in this case also. Note that the
problem of sampling the system in Fig 2 can not
be trivially solved by changing the order of Gy(s)
and the time delay and reducing the problem to
the system in Figl. The pulse transfer function
between input and output will be the same, but
the transformation changes the states of G; from
z1(kh) to 21(kh—7) and one will hence not obtain
a state space representation with the values of
all state variables at the sampling points, see the
discussion in [Wittenmark, 1985),

The question with several time delays at arbitrary
positions in a multivariable linear system arises
naturally. When is the sampled systemn finite di-
mensional ? This problem has not previously been
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Fig. 2 The casc with a single inner time delay

solved. One reason might be that the answer, as
we will see, is that the sampled system is not al-
ways finite dimensional, see [Koepcke, 1965]. Sam-
pling of general time delay systems can therefore
be very hard and the success will depend on where
the time delays are situated. In this paper we will
describe what systems becomes finite dimensional
when sampled and we will present a short and con-
structive state space algorithm for sampling such
systemas,

Since the problemn with several inner time delays
has not been solved before, it has been circum-
vented in different ways, e.g. by approximating
delays with Taylor-series expansions or by neglect-
ing the time delays. The success of all approximate
methods will depend on the situation. The prob-
lem is generally harder the longer the time delays
are. A comparison of some approximate methods
used on an industrial example is made in [Ham-
marstrom and Gros, 1980}

From both a theoretical and practical viewpoint
it is preferable with an exact representation of the
sampled system. This is the aim of the current
paper. In Section 2 we define notation and intro-
duce an example to illustrate ideas. In Section 3 we
show how a finite dimensional sampled system can
be obtained for systemns having no feedback loop
around any time delay. We also give an example
showing that this is not possible for all systems.
In Section 4 we present necessary conditions for
a system to be FDS for all values of time delays.
Conclusions and open questions are presented in
Section 5.

For a more detailed version of the paper see
[Bernhardsson, 1992].

2. PROBLEM FORMULATION

We will assume that zero-order hold circuits are
used. This means that control signals are held
constant between sampling points:

u(t) = u(kh)  t€ [bh,kh+h),

were h is the sampling period. We assume that the
continuous time system is given in the following
form:

B(t) = D Aiolt - ) + > Biuft~7)

i=p+1

== Zﬂiz;z(t) + Z Biziu(t) (1)

=0 i=p+l
= A(2)a(t) + B(z)u(t)

where zf(t) = ft—n), o =0,2 = (fl""’z?)
and A(Z) = AO + Efzo A(Zi, B(Z) = Eizp+1 B,‘Z"
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Fig. 3 A simple problem with several time delays, The
system conaists of three mixing tanks describeq
by firat order systems and has two transportation
delays.

=l

Fig. 4 This sysiem becomes finite dimensional when sam.
pled if and only if 7 is a rational multiple of the
sampling period h.

Examrre ]

The systemn in Fig 3 describes a chemical engi-
neering processes with two transport delays and
three mixing tanks, described by firat order sys-
tems, The system can be written as:

PEN (a1 0 0 [ 6 00 zy
Et- Ta i = 0 2] 0 z2| + | a21 0o Z1 | T2
23 L g0 a3 Za 31 0o Z3
[0 00 1 by
-+ 6C 060 e |+ 10 |u
_(131 0329 T3 0

3. SAMPLING SYSTEMS WITH
SEVERAL TIME DELAYS

Not all systems become finite dimensional when
sampled. The phenomenon can also depend on the
sample rate.

EXAMPLE 2

Consider the system in Fig 4. This systern gives
an infinite dimensional sampled system unless = is
a rational multiple of the sampling rate k. In fact
the system has poles, at the zetos of 1 —e™*7, L.e.
at & = 2kxifr, k = 0,%1,... After sampling,
the poles are transformed to e**h = g2*™id/T } =
8, £1,...and if h/T is irrational there are infinitely
many discrete time poles. The sampled system
is therefore not finite dimensional, On the other
hand if A/r is rational it is easy to see that the
sampled system is finite dimensional.

DEFINITION 1

We say that a differential-difference system of the
form (1) is a finite dimensionably samplable (FDS)
system, if it’s zero order hold sampled version can
be represented with a finite dimensional discrete
time system for all values of the delays w.

The following lemma is a useful description of the
golution to (1).
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LEMMA 1
The solution to (1) satisfies, Vs, ¢,

z{s +1t) = ¢, z)z(s)—{—j:;;(t —r,z)B(z)u(s + r)dr

562) = 3. (4G
k=0

PROOF  See [Hale, 1071],(Bernhardsson, 1992].

The following condition is the key to categorizing
FDS-systems.

ConpitTioN FBF.

A system of the form (1) i said to be feedback free
(FBF), if and only if, for all sets of indices 1y, ...4p
for which some of the strictly positive indices are
equal (iy = i, > 0), we have

HA,, =0 (2)

For instance we must have 4;AgA; = 0 and A] =
0 but there is no restriction on e.g. A1A3Az4.

Condition FBF can easily be checked in a block
diagram of the system. Write the system equa-
tions in a form where the matrices A; all are
of rank 1. This means that time delays of equal
length, situated at different positions in the sys-
tem, are treated as different. Condition FBF is
then satisfied if there are no feedback loops in the
system around any of the delays.

LEMMA 2
If (2) is satisfied there exist continuous functions
Fo(t), Fu(t), ... F1..p(t) such that
#(t,2) = Fo(t) + Fi(t)zs + ... + Fp(t)zp +
+ Fia(t)z12z + .- + Fp15(t)2p-1%
oo+ Frp(t)ar...2%p ¥,z (3)

SKETCH OoF PROOF Treat 21,...,% a8 alge-
braic variables. The infinite sum
oo

E
FCREDY %‘,(Ao + A1zt Az

’ E=0
then converges absolutely for all ¢t and 2. When
we expand the terms in the sum, all terms where
some z; is multiplied by itself becomes zero. This
is exactly (2). This leaves us with the terms stated
in the theorem. The manipulations involved in
collecting terms in this way are allowed.

One can give explicit expressions for the F:s.
Foft) = s
F;(i) = e(-f‘tﬁ"«*h)‘ - Fo(t)

Fylt) = 404 — Fy(1)
Fria(t) = eldot At adt _ gy — Fi(t) - Fa(t)

FI...p(t) — e(Au+A1+--.A,)| _ Fo(f) -R (i) — = FZ...p(t)

We are now ready to show

THEOREM 1

If condition FBF, see (2), is satisfied, the system
(1) is FDS. One finite dimensional sampled repre-
sentation is given by

X (kh+h) = ®.X,(kh) + L.U(kh)

Here X, is an extended state space vector

- x(t) —
E(t End T]_)
Xc(t) = z(t — m2)
L.z(t—-'rl - ...—-Tp)_
The matrix ®, equals
Fg(h) ' Fl...p(h)
Fg(h—‘!‘l) F]____p(h—-‘rj_)
Fo(h—‘h-—...—‘rp) .Fl___p(h—-rl —-...—Tp)
The vector U, is given by
u{kh)
u(kh — k)
U= _ (d-1)h<> n<dh
u(kh — dh)

The matrix T, is determined by using that u(t) is
constant between samples and that [,U, equals
. f{:‘ d(h — r, 2)B(z)u(kh + r)dr
I3 7 ¢(h = 11—, 2) B(2)u(kh + r),dr

[ = .= 7y — 1, 2) B(2)u(kh + r)dr

ProoF Using lemmas 1 and 2 with s = kh and
t=hh—-—7,...,t =h-71—...— 17 wecan
update the full state vector X.(kh + k) from the
value of X.(kh) and the d+1 last values of u(kh).

EXAMPLE 3
Using (3) on the example in Fig 3 gives

¢(t, z) = Fg(f)-{-Fj_(t)zl+F2(t)zz+F12(t)Z122 (4)

where

-a1 00 0 00
Folt)=| 0 oz 0 | Fy(t) = | 2zl 00
0 0 as zanlaas) g g
b a1 —as
[ 0 0 0
Falt) = 0 0 0
au(a\"ﬂs) a,;(a,—aa) 0
L g1—a3s g3—as

where a; = exp(a;t) and where Fy; is given by a
too long expression to write out here. We get
a(kh +1) = Fo(t)z(kh) + Fy(t)e(kh - 1)
+Fz(t)$(kh - T;;) + Fn(t)z(kh - Tt — Tz)
+ Doft)u(kh) + T1(t)u(kh — k) (5)
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Fig. 5 Simulation verifying the equations for the sampled
version of BEx 2.

If we assume for simplicity in notation that = +
mShwegetfort<h:

t

To(t) = [) Folt— o)Bds + f Fi(t—5)Bds +

min(ry,t}

t 4
+/ Fz(t—s)B ds+/ Fm(t—s)Bds
min{ra,t) min{ry +7r2,{)

and similarly for I'y(¢). Equation (5} can now be
used fort = h, h—m,h-mand h—m — 7
to update the full X,-vector, We will not present
the full discrete time system since $, is a 12 by
12-matrix, The representation is not of minimal
order but can be reduced to such by any standard
technique.

Fig 5 shows a simulation of the continuous time
system and of the sampled data representation
that results from Theorem 1. The system is started
from zero initial condition at ¢ = 0. The input
is 1 until ¢ = 3 and then —1. The plots perfectly
confirms the calculations.

4. NECESSARY CONDITIONS

Theorem 1 shows that condition FBF is sufficient
for a system of the form (1) to be FDS, We also
have the following result of necessity which is
proved in [Bernhardsson, 1992}:

THEOREM 2

Assume the system is given by (1). Then if the
open loop system contains a feedback loop around
any of the delays the system is not FDS for all
sampling rates b and time delays ;.

Ex. 1 shows that a system with feedback loop
around a time delay can be FDS for some special
values of h and 7;. Theorems 1,2 are therefore the
best possible.

5. CONCLUSIONS/OPEN QUESTIONS

We have shown how to obtain a finite dimensional
system when sampling a system containing several
time delays. We have also shown that the condi-
tion for obtaining a finite dimensional system, for
all h and x, is that the systemn has no feedback
loop around any time delay. The algorithm has

been used on an example and the results have been
verified by simulation.

It would be nice with an improved algorithm that
guarantees a minimal order sampled representa-
tion.

1t is possible to generalize the results of this paper
to sampling of continuous time systems with white
noise. Sampling of continuous time quadratic loss
functions also gives rise to similar integrals, Both
problems can be solved using Lemmas 1 and 2
above if the FBF-condition is satisfied.
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