Lecture 4:
Input/output pole-placement

Simple design procedure
"Remove" factors in A and B
Shape command signal response
Example

"Add" factors in R and S
Practical aspects

State-space design — output feedback
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A, =det(q] —® +TL) A, =det(¢g] — P+ KC)
BA, B,

More examples Y= Hypg g, te = Hmte = 7 uc
e Special case A,, = A,
e Watch out for B!
Problem formulation A formal solution
Process B(2) v e
V4
H(Z) = Ue
A(2) "| Ru = Tu,-Sy Lé)‘ % Lg:}y
Observer polynomial A,(2) stable

Desired characteristic equation
A(2) = A(2)As(2) A, controller polynomial, stable

Controller

R(q)u(k) = T(q)uc(k) — S(q)y(k)
Causality implies

degR > degT degR > deg S

Closed loop system Desired input-output relation

BT BT BT B
T AR+ BS '~ AR+ BS  AA, A,

Problem: How to determine R, S, and T'?
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Simple pole-placement design

Data: Model: B(z)/A(z), A(z) and B(z) do not have any com-
mon factors. Specifications: Desired closed-loop characteristic
polynomial A (z).

Step 1. Find R(z) and S(z) with deg S(z) < deg R(z) such that
A(2)R(2) + B(2)S(2) = Au(z)
Step 2. Factor the closed-loop characteristic polynomial as
A (2) = A(2)As(2), where deg A,(z) < deg R(z), and choose
T (2) = toAo(2)
where ¢, = A.(1)/B(1). The control law is
R(q)u(k) = T(q)uc(k)—-S(q)y(k) = Aclq)y(k) =toB(q)uc(k)

Diophantine equation
A(2)X (2) + B(2)Y(2) = C(2)

Diophantine (Diophantus ~ A.D. 300), Aryabhatta, Bezout
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e When has the Diophan-
tine equation a (unique)
solution?
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e An algebraic digression

An algebraic digression

Assume x and y integers
3x+2y=5
Some solutions
x: -5 -3 -1 1 3 5 1
10 7 4 1 -2 -5 -8

General solution
X =x9+2n n integer

. o y=Y0o—3n
Unique solution if

0<x<2 or 0L5y<3

No solution to
4x+6y=1

Integers and polynomials are rings

Main result

Diophantine equation
A(2)X (2) + B(2)Y(2) = C(2)
Theorem

- Solution exists if and only if greatest common factor of A
and B also a factor in C
- Many solutions. If X, and Y, is a solutions then for arbi-

trary @ X = %ot 0B
= X0+

Y=Y,— QA
is also a solution
- Uniqueness if

degX <degB or degY <degA




Compatibility conditions

AR + BS = A,A,
Ru = —-Sy+ Tu,
* Causality
deg R > deg S
degR > degT
Equality implies no delay in the controller
* Uniqueness (Minimum degree solution)

degS < degA

i
degS =degR =degT =degA,=n-—1
degA.=n

Solution of Diophantine equation
A(2)X (2) + B(2)Y(2) = C(2)
(aoz” 4+ 4 an)(xoz”_l 4+ 4 xn—l)
+(boZ" + -+ 4 bn) (02" T+ 4 yn1)

2n—1
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Qn ap-1 -+ Q1 by b1 - b1 Yo Cn

0 a, az 0 bn be
: : . : : . Yn—1 Con—1
0 0 - a, O 0 - b,

S
Sylvester matrix, Common factors

Cancellation of poles and zeros

Why? Why not? Factorize
A=A*A" B=B'B~
A" and BT are “nice” polynomials
Cancellation of A* and B* implies
R=B'R S=A'S T=A'T
Ay =AR+BS=A*BY*(A"R+B~S)=A*B*A,
Introduce (quite arbitrarily)
A.=BTA, A,=A"A,
Design equation
ATR+B S=A,=AA,

Design procedure
Desired closed-loop characteristic equation
AT R+B S=A,=AA,
Minimum degree solution if deg S < deg A~ =

B*Ru=A"Tu, — A*Sy

A (T, 8
=g \lg— 57

Cancel some poles and zeros, and then make the design.

Interpretation

The simple case T = tyA,
BT tB*B~A, t,B~
Acl B AcAo B Ac




Practical limitations on B*

Don’t cancel all zeros within the unit circle!

Avoid zeros on the negative real axis

Avoid poorly damped zeros
Cancel only in shaded area D

Im

(
Q Re

Separation of disturbance and command resp.

Compare state-feedback design and feedforward from refer-
ence signal. Desired command signal response
B,

m:Hm c = x
Y u A,

Ue

Limitation: B,, = B,,B~
R=A,B'R

Try the controller
S=A,A"S T=B,AAA"

If common factors between A,, and A, cancel before imple-
mentation of the controller

BT B*B B,A,A A" _ B B,AA.
AR+ BS A+A-A,B*R+ B*+B-A,,AtS A,(AR+BS)
—_—
ALA,

Alternativ formulation

e [B. B |
A, A
wT, 8 _ABx AA S
"R™ R A,B* R “ R’
_A"B, AR+BS S _BmAu+§( )
T A.B* B “ R A, TRV
Feedforward and feedback Gives the closed loop system
B,
=—Uu
Yy A e

The combined generation of y,, and u;r requires great care.

Example — Motor

K(z—0b)
(z—1)(z—a)
Cancels the zero
B*=2—-b,B  =K,B, =B,/K,A* =1, A, = 1, and
A, =A,.

Control law using AR + B-S = A,,, degS = 1,degR = 0

(a

Z(l + p1+ pz)

H(z) =
() z2+plz+p2

b<0 Hy(z)=

g

I —— == 1 - ==

Output

a)h=0.25b)h=1 ; ’ oo ’ Y

Input

(=] - [
Input

(=] = [N




Motor example — No cancellation

14+ p1+pe z—b
H,(z) =
(2) 1-b 224+ pi1z+po
1?+ =1,B =K(z—-0b),At =1, A, = A, A, = 2z, and

_ 1+pitpe
B, = K(1-b)

Control law using AR+ B-S = A,,A,,degS =1,degR =1
u(k) = touc(k) —soy(k) — s1y(k — 1) —riu(k — 1)

g

(a

Note: The same struc- 0 0
ture as for cancellation
a)h=025b)r=1

"Add" factors in R ans S

v

Ru =Tu,— Sy e B ad
A
BT ., _BR_ BS
YT AR+BS“TAR+BS' AR+BS°©
AT AS AS

“TAR+BS“ AR+BS' AR+BS°©

Integrators R = B*R4R, Ry = (2 — 1)’
Notch filter S = A*+S,;S where e.g.

Sq(2) = 2> — 2zcos wh + 1

Full design algorithm

Data: B/A, B,,/An, Ra, Sq, and Ay

Step 1: Factor A = A"A", B = B"B*, B, = B B,,
A, =ATBTA, A,
Step 2: Solve
A_RdE + B_Sds = Acz degS =degA " R;—1

Step 3: Control law

Ru = Tu,~SyR =A,B'R;R, S=A,A"S;S T =B,A"A

Degree conditions:

degA,, —deg B,, > degA —degB =d
deg A,; = (deg AR = deg A + deg S)
=2degA+degA,, +degR; +degS;—1

Practical aspects

Solution of the Diophantine equation
Zero cancellations

How to choose A, and A,?
Magnitude of u

y=Hu . H,,
y=Hpu, “= ?uc
Selection of A (A,A.B™)
wh = 0.2-0.6

Response to load and noise
Influence of observer polynomial




Consider

Gain

Observer polynomial

0.01 0.
Frequency, rad/s

1 1

10

Gain

0.01

0.1 1
Frequency, rad/s

10

A,(2) = z — a Transmission to x from a) Load v and b)
Measurement error e

o =1 (full), « = 0.9 (dashed), @ = 0.5 (dash-dotted), « = 0

(dotted)

Harmonic oscillator

Process model

G(s)

24wl

Sampled pulse-transfer operator

H(q) =

(1-p)(¢+1) _ B(q)

- A
- A,

Q?—2Bg+1
Specifications (nominal design)

No zero cancellation

~ A(g)

s?+20ws+ w?> =0
32 + 2§obsa)obss + w?bs
- Sampling interval h = 0.2

B = cos(woh)

w=15 =07
Wops = 3 gobs = 0.7

Harmonic oscillator cont’d

Nominal design a) Without, b) With integrator

(a)

20
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Time

(b)

1 \V4 MY
0
0 20 40
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0 20 40
Time

Harmonic oscillator cont’d

Changing observer dynamics

a) WDops = 4 b) WDops = 8
(a)

o1 \Va AN
=3
&
j=3
o
0
0 20 40
B2
=]
S
0
0 20 40
Time

20 40

20 40
Time




Harmonic oscillator cont’d

Changing sampling interval
Nominal w,sh =0.6a) h=0.1b) A =1

(a) (b)
- 1 \Va ~\a= - 1M ~A )
eV
=] =
o o
0 0
0 20 40 0 20 40
52 52
2, 2,
E = “;—WM
0 0
0 20 40 0 20 40
Time Time

Harmonic oscillator cont’d

Antialiasing filter 6th order Bessel
Nominal design gives unstable system
Approximate the filter with a delay and redo the design

Output
Input

p—re

0 20 40 0 20
Time

40
Time

Robot mechanism example

¢ ()
I
—1 Motor = ——
01 W9
Jq J,

Antialiasing filter, second order with @y = 2

A(q) = (¢* — 0.7505q + 0.2466) (¢* — 1.7124q + 0.9512)(q — 1)

filter

process

B(g) = 0.1420-107%(¢g+12.1314)(¢+1.3422)(¢+0.2234) (q—0.0023)

Robot mechanism example

Poles and zeros

1k

Imaginary axis
=
©
o

-2 -1 0 1
Real axis




Notch filter design

- Sample, h = 0.5, A.(s) = (s> + 2{, 0 s + @2) (s + @10,,)

and keep the antialiasing dynamics
- deg A, = 2 Same poles as A,
- Include the oscillatory part

At(z) = 22 — 1.7122 4+ 0.9512

AR+ BS =A%A.A,

Output

4th order controller =

0 A
9th order closed loop o >
system g1
A, factor in A but not in =
B = factorin S o 10

Time

80

Active damping

Damp the oscillatory modes,
¢, =0.05—0.7

Output
S —
\I
|
|
<I
|

[\

Input
o R

Time

Comparison

State feedback design and full observer
(No antialiasing filter)
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Input
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Sensitivity
The design is done for H = B/A but the true system is
H° = B°/A°
Problem: How sensitive is the closed loop system?
Theorem
The closed loop system is stable if
[H(z) - H(2)| . 1 Hyr(2)
|H (2)] T |Hn(2)| [Hps(2)

1 T
| Hon (2)] 'E'
for |z| =1

Right hand side depends on known quantities!




Robot mechanism

Sensitivity function for notch design and active damping design

Smith-predictor

One way of reducing the effect of delays

AR e Design a regulator
S = A, G, as if there is no
delay.
Gr Gp F]o:tgll;* 7777777777 j\ Process
1+ G,«Gp ; ) G, u }
g | Process model ‘
S e Find G, such that | \L_mﬂH G, )—J |
.- - N
eTGLG, TG, G, o
L L / =
0.01 0.1 1 10 1+G.G, 1+G,G, —
Frequency, rad/s
Notch (full), active (dashed) e Good for discrete-
time systems
Smith-predictor — Example Summary

First order system with time-delay
y(k+1) =0.37y(k) + 0.63u(k — 2)
No delay: Pl with K =0.4 and T; = 0.4
Smith pred. (full) and Pl-contr, K = 0.1, T; = 0.5 (dashed)

0 20 40

0 20 40
Time

e Convenient method for design

e Design parameters A., A,, and A

e Relate A, and A, to physical process

e Be careful with zero cancellations

e Many other methods can be interpreted as pole-placement




