
Lecture 4:

Input/output pole-placement

• Simple design procedure

• "Remove" factors in A and B

• Shape command signal response

• Example

• "Add" factors in R and S

• Practical aspects

• More examples

• Sensitivity

State-space design – output feedback

∑−L
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ˆ x 
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  u c

Hff

Ac = det(qI − Φ + ΓL) Ao = det(qI − Φ + KC)

y= H f f
BAo

AcAo
uc = Hmuc =

Bm

Am
uc

• Choose H f f =
Bm/Am
B/Ac

• Special case Am = Ac

• Watch out for B!

Problem formulation

* Process

H(z) =
B(z)

A(z)

* Observer polynomial Ao(z) stable

* Desired characteristic equation

Acl(z) = Ac(z)Ao(z) Ac controller polynomial, stable

* Controller

R(q)u(k) = T(q)uc(k) − S(q)y(k)

Causality implies

deg R ≥ degT deg R ≥ deg S

A formal solution

u c
u

v

x

e

yB

A
∑ ∑Ru = Tuc − Sy

A(q)y(k) = B(q)u(k)

R(q)u(k) = T(q)uc(k) − S(q)y(k)

Closed loop system

y =
BT

AR + BS
uc

Desired input-output relation

BT

AR + BS
=
BT

AcAo
=
t0B

Ac

Problem: How to determine R, S, and T?



Simple pole-placement design

Data: Model: B(z)/A(z), A(z) and B(z) do not have any com-

mon factors. Specifications: Desired closed-loop characteristic
polynomial Acl(z).

Step 1. Find R(z) and S(z) with deg S(z) ≤ deg R(z) such that

A(z)R(z) + B(z)S(z) = Acl(z)

Step 2. Factor the closed-loop characteristic polynomial as
Acl(z) = Ac(z)Ao(z), where deg Ao(z) ≤ deg R(z), and choose

T(z) = t0Ao(z)

where t0 = Ac(1)/B(1). The control law is

R(q)u(k) = T(q)uc(k)−S(q)y(k) [ Ac(q)y(k) = t0B(q)uc(k)

Diophantine equation

A(z)X (z) + B(z)Y(z) = C(z)

Diophantine (Diophantus ( A.D. 300), Aryabhatta, Bezout

• Two unknowns, one
equation?!

• When has the Diophan-
tine equation a (unique)

solution?

• An algebraic digression

An algebraic digression

Assume x and y integers

3x + 2y = 5

Some solutions

x : −5 −3 −1 1 3 5 7

y : 10 7 4 1 −2 −5 −8

General solution
x = x0 + 2n n integer

y= y0 − 3n
Unique solution if

0 ≤ x < 2 or 0 ≤ y< 3

No solution to
4x + 6y = 1

Integers and polynomials are rings

Main result

Diophantine equation

A(z)X (z) + B(z)Y(z) = C(z)

Theorem

- Solution exists if and only if greatest common factor of A

and B also a factor in C

- Many solutions. If X0 and Y0 is a solutions then for arbi-
trary Q

X = X0 + QB

Y = Y0 − QA

is also a solution

- Uniqueness if

deg X < deg B or degY < deg A



Compatibility conditions

AR + BS = AoAc

Ru = −Sy+ Tuc

* Causality
deg R ≥ deg S

deg R ≥ degT

Equality implies no delay in the controller

* Uniqueness (Minimum degree solution)

deg S < deg A

W

deg S = deg R = degT = deg Ao = n− 1

deg Ac = n

Solution of Diophantine equation

A(z)X (z) + B(z)Y(z) = C(z)

(a0z
n + ⋅ ⋅ ⋅+ an)(x0z

n−1 + ⋅ ⋅ ⋅+ xn−1)

+(b0z
n + ⋅ ⋅ ⋅+ bn)(y0z

n−1 + ⋅ ⋅ ⋅+ yn−1)

= c0z
2n−1 + ⋅ ⋅ ⋅+ c2n−1)


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

Sylvester matrix, Common factors

Cancellation of poles and zeros

Why? Why not? Factorize

A = A+A− B = B+B−

A+ and B+ are “nice” polynomials

Cancellation of A+ and B+ implies

R = B+R̄ S = A+S̄ T = A+T̄

Acl = AR + BS = A
+B+(A− R̄ + B−S̄) = A+B+ Ācl

Introduce (quite arbitrarily)

Ac = B
+ Āc Ao = A

+ Āo

Design equation

A−R̄ + B−S̄ = Ācl = Āc Āo

Design procedure

Desired closed-loop characteristic equation

A−R̄ + B−S̄ = Ācl = Āc Āo

Minimum degree solution if deg S̄ < deg A− [

B+R̄u = A+T̄uc − A
+S̄y

Interpretation

u =
A+

B+

(
T̄

R̄
uc −

S̄

R̄
y

)

Cancel some poles and zeros, and then make the design.

The simple case T = t0Ao

BT

Acl
=
t0B

+B−Ao

AcAo
=
t0B

−

Āc



Practical limitations on B+

• Don’t cancel all zeros within the unit circle!

• Avoid zeros on the negative real axis

• Avoid poorly damped zeros

• Cancel only in shaded area D

D

Im

Re

1

Separation of disturbance and command resp.

Compare state-feedback design and feedforward from refer-

ence signal. Desired command signal response

ym = Hmuc =
Bm

Am
uc

Limitation: Bm = B̄mB
− Try the controller

R = AmB
+R̄ S = AmA

+S̄ T = B̄m Āo ĀcA
+

If common factors between Am and Āc, cancel before imple-

mentation of the controller

BT

AR + BS
=

B+B− B̄m Āo ĀcA
+

A+A−AmB+R̄ + B+B−AmA+S̄
=

B− B̄m Āo Āc

Am(A
−R̄ + B−S̄

︸ ︷︷ ︸

Āo Āc

)

Alternativ formulation

u y
∑ ∑

−1

ymuc

  

B m

A m

  

A

B

  

S

R   

B

A

uff

ufb

u =
T

R
uc −

S

R
y =

A+ B̄m

AmB+
⋅
Āo Āc

R̄
uc −

S

R
y

=
A+ B̄m

AmB+
⋅
A−R̄ + B−S̄

R̄
uc −

S

R
y=

B̄mA

AmB+
uc +

S

R
(ym − y)

Feedforward and feedback Gives the closed loop system

y=
Bm

Am
uc

The combined generation of ym and u f f requires great care.

Example – Motor

H(z) =
K (z− b)

(z− 1)(z− a)
b < 0! Hm(z) =

z(1+ p1 + p2)

z2 + p1z+ p2
Cancels the zero

B+ = z − b, B− = K , B̄m = Bm/K , A+ = 1, Ao = 1, and
Āc = Am.

Control law using AR̄ + B−S̄ = Am, deg S = 1, deg R̄ = 0

a) h = 0.25, b) h = 1
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Motor example – No cancellation

Hm(z) =
1+ p1 + p2
1− b

z− b

z2 + p1z+ p2
B+ = 1, B− = K (z − b), A+ = 1, Ac = Am, Ao = z, and
B̄m =

1+p1+p2
K (1−b)

Control law using AR + B−S = AmAo, deg S = 1, deg R = 1

u(k) = t0uc(k) − s0y(k) − s1y(k− 1) − r1u(k− 1)

Note: The same struc-
ture as for cancellation

a) h = 0.25, b) h = 1
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"Add" factors in R ans S

u c
u

v

x

e

yB

A
∑ ∑Ru = Tuc − Sy

x =
BT

AR+ BS
uc +

BR

AR + BS
v−

BS

AR + BS
e

u =
AT

AR+ BS
uc −

AS

AR + BS
v−

AS

AR + BS
e

• Integrators R = B+RdR̄, Rd = (z− 1)
l

• Notch filter S = A+SdS̄ where e.g.

Sd(z) = z
2 − 2z cosωh+ 1

Full design algorithm

Data: B/A, Bm/Am, Rd, Sd, and Acl

Step 1: Factor A = A−A+, B = B−B+, Bm = B− B̄m,
Acl = A

+B+Am Ācl

Step 2: Solve

A−RdR̄+ B
−SdS̄ = Ācl deg S̄ = deg A−Rd − 1

Step 3: Control law

Ru = Tuc−SyR = AmB
+RdR̄, S = AmA

+SdS̄ T = B̄mA
+ Ācl

Degree conditions:

deg Am − deg Bm ≥ deg A− deg B = d

deg Acl = (deg AR = deg A+ deg S)

= 2 deg A+ deg Am + deg Rd + deg Sd − 1

Practical aspects

* Solution of the Diophantine equation

* Zero cancellations

* How to choose Ac and Ao?

* Magnitude of u

y = Hu

y = Hmuc
[ u =

Hm

H
uc

* Selection of h (AoAcB
+)

ωh = 0.2–0.6

* Response to load and noise

* Influence of observer polynomial



Observer polynomial

Consider

H(z) =
0.1

z− 1
Hm(z) =

0.2

z− 0.8
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Ao(z) = z − α Transmission to x from a) Load v and b)

Measurement error e
α = 1 (full), α = 0.9 (dashed), α = 0.5 (dash-dotted), α = 0
(dotted)

Harmonic oscillator

Process model

G(s) =
ω 20
s2 +ω 20

ω 0 = 1

Sampled pulse-transfer operator

H(q) =
(1− β )(q+ 1)

q2 − 2β q+ 1
=
B(q)

A(q)
β = cos(ω 0h)

Specifications (nominal design)

- No zero cancellation

- Ac : s2 + 2ζ ω s+ω 2 = 0 ω = 1.5 ζ = 0.7

- Ao : s2 + 2ζ obsω obss+ω 2obs ω obs = 3 ζ obs = 0.7

- Sampling interval h = 0.2

Harmonic oscillator cont’d

Nominal design a) Without, b) With integrator

0 20 40
0

1

O
u

tp
u

t

(a)

0 20 40

0

2

In
p

u
t

Time

0 20 40
0

1

O
u

tp
u

t

(b)

0 20 40

0

2

In
p

u
t

Time

Harmonic oscillator cont’d

Changing observer dynamics

a) ω obs = 4 b) ω obs = 8
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Harmonic oscillator cont’d

Changing sampling interval

Nominal ω obsh = 0.6 a) h = 0.1 b) h = 1
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Harmonic oscillator cont’d

Antialiasing filter 6th order Bessel

Nominal design gives unstable system
Approximate the filter with a delay and redo the design
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Robot mechanism example

I
Motor

ω1 ω2

ϕ 1 ϕ 2

J 1 J 2

Antialiasing filter, second order with ω f = 2

A(q) = (q2 − 0.7505q+ 0.2466)
︸ ︷︷ ︸

filter

(q2 − 1.7124q+ 0.9512)(q− 1)
︸ ︷︷ ︸

process

B(q) = 0.1420⋅10−3(q+12.1314)(q+1.3422)(q+0.2234)(q−0.0023)

Robot mechanism example

Poles and zeros
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Notch filter design

- Sample, h = 0.5, Ac(s) = (s
2 + 2ζmωms+ω 2m)(s+α 1ωm)

and keep the antialiasing dynamics

- deg Ao = 2 Same poles as A f

- Include the oscillatory part

A+(z) = z2 − 1.712z+ 0.9512

AR + BS = A+AcAo

4th order controller [
9th order closed loop

system
An factor in A but not in

B [ factor in S 0 40 80
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Active damping

Damp the oscillatory modes,

ζ p = 0.05→ 0.7
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Comparison

State feedback design and full observer

(No antialiasing filter)
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Sensitivity

The design is done for H = B/A but the true system is

H0 = B0/A0

Problem: How sensitive is the closed loop system?

Theorem
The closed loop system is stable if

pH(z) − H0(z)p

pH(z)p
≤

1

pHm(z)p

∣
∣
∣
∣

H f f (z)

H f b(z)

∣
∣
∣
∣
=

1

pHm(z)p

∣
∣
∣
∣

T

S

∣
∣
∣
∣

for pzp = 1

Right hand side depends on known quantities!



Robot mechanism

Sensitivity function for notch design and active damping design

S =
AR

Acl
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Smith-predictor

One way of reducing the effect of delays

• Design a regulator
Gr as if there is no

delay.

GrGp

1+ GrGp

• Find G′r such that

esTG′rGp

1+ G′rGp
=
esTGrGp

1+ GrGp

• Good for discrete-
time systems

u y
Process

−1 + e −sT

uc
∑

Gp

−1

  e
−sT

GpG r

Process model

Controller

∑

Smith-predictor – Example

First order system with time-delay

y(k+ 1) = 0.37y(k) + 0.63u(k− 2)

No delay: PI with K = 0.4 and Ti = 0.4

Smith pred. (full) and PI-contr, K = 0.1, Ti = 0.5 (dashed)
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Summary

• Convenient method for design

• Design parameters Ac, Ao, and h

• Relate Ac and Ao to physical process

• Be careful with zero cancellations

• Many other methods can be interpreted as pole-placement


