 Lecture 3: State-feedback, observers, reference values, and integrators Problem formulation Pole placement Observers Output feedback Reference values A larger example 	 Problem formulation Model: Continuous-time, sample with h ⇒ x(kh + h) = Φx(kh) + Γu(kh) Disturbances: Sporadic pulse disturbances x(0) = x₀ Criterion: x(t) → 0 reasonably fast with reasonable inputs u. Choose closed loop poles Admissible controls: Linear controllers, all states available More complicated problems later
Problem formulation cont'd	Example – Double integrator
Design parameters	$x(kh+h) = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} x(kh) + \begin{pmatrix} h^2/2 \\ h \end{pmatrix} u(kh)$
Closed loop poles	Linear state-feedback controller
Sampling interval	$u(kh) = -Lx(kh) = -l_1x_1(kh) - l_2x_2(kh)$
 Compare x(t) and u(kh) with specifications 	Closed-loop system becomes
 Trade-off between control magnitude and speed of re- sponse 	$x(kh+h) = (\Phi - \Gamma L)x(kh)$ = $\begin{pmatrix} 1 - l_1h^2/2 & h - l_2h^2/2 \\ -l_1h & 1 - l_2h \end{pmatrix} x(kh)$

• Subjective judgements

$$\begin{aligned} (kh+h) &= (\Phi - \Gamma L) x(kh) \\ &= \begin{pmatrix} 1 - l_1 h^2 / 2 & h - l_2 h^2 / 2 \\ - l_1 h & 1 - l_2 h \end{pmatrix} x(kh) \end{aligned}$$

Characteristic equation

$$z^{2} + \left(rac{l_{1}h^{2}}{2} + l_{2}h - 2
ight)z + \left(rac{l_{1}h^{2}}{2} - l_{2}h + 1
ight) = 0$$

Example cont'd General case Characteristic equation Basic problem: Find L such that $\Phi - \Gamma L$ has prescribed eigenvalues $z^{2} + \left(\frac{l_{1}h^{2}}{2} + l_{2}h - 2\right)z + \left(\frac{l_{1}h^{2}}{2} - l_{2}h + 1\right) = 0$ Solvable \Leftrightarrow (Φ , Γ) reachable Desired characteristic equation $\Leftrightarrow W_c = [\Gamma, \Phi\Gamma, \dots, \Phi^{n-1}\Gamma]$ has full rank $z^2 + p_1 z + p_2 = 0$ • Matlab L = place(Phi,Gamma,neweigs) Linear equations for l_1 and l_2 • Unique solution, linear in l_i $\frac{l_1h^2}{2} + l_2h - 2 = p_1 \qquad \frac{l_1h^2}{2} - l_2h + 1 = p_2$ • L depends on h• How to choose the specifications? Solution - Use the continuous time counterpart - Damping ζ and natural frequency ω (ω_0) of dominating $l_1 = \frac{1}{h^2} (1 + p_1 + p_2)$ $l_2 = \frac{1}{2h} (3 + p_1 - p_2)$ poles Solution via controllable form How to find T? $L = \tilde{L}T = \left(\begin{array}{ccc} p_1 - a_1 & p_2 - a_2 & \cdots & p_n - a_n \end{array} \right) T$ z = Tx, $\tilde{\Phi} = T\Phi T^{-1}$, $\tilde{\Gamma} = T\Gamma$ $u = -\tilde{L}z = -\tilde{L}Tx = -Lx$ $\tilde{W}_c = [T\Gamma, T\Phi T^{-1}T\Gamma, \dots, T\Phi^{n-1}\Gamma] = TW_c$ $det(zI - \Phi) = A(z) \qquad det(zI - (\Phi - \Gamma L)) = P(z)$ Solvable for T if the system is reachable $\tilde{\Phi} = \begin{pmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ & & & & & & \ddots \end{pmatrix} \qquad \tilde{\Gamma} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ $\tilde{W}_{c}^{-1} = \begin{vmatrix} 0 & 1 & \cdots & a_{n-2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \end{vmatrix}$ Desired characteristic equation obtained for $T^{-1} = W_c \tilde{W}_c^{-1} = \left(\Gamma \quad a_1 \Gamma + \Phi \Gamma \quad \dots \quad a_{n-1} \Gamma + \dots + \Phi^{n-1} \Gamma \right)$ $u = -\tilde{L}z = -\left(\tilde{l}_1 \quad \tilde{l}_2 \quad \dots \quad \tilde{l}_n \right) z$ $L = \left(\begin{array}{cccc} p_1 - a_1 & p_2 - a_2 & \cdots & p_n - a_n \end{array} \right) \cdot$ $= - \left(\begin{array}{cccc} p_1 - a_1 & p_2 - a_2 & \cdots & p_n - a_n \end{array} \right) z$ $\left(\Gamma \quad a_1 \Gamma + \Phi \Gamma \quad \dots \quad a_{n-1} \Gamma + \dots + \Phi^{n-1} \Gamma \right)^{-1}$ • How to get T?

General disturbances General disturbances, cont'd Combined feedback and feedforward Dynamical systems with initial values gives the disturbance v $u(k) = -Lx(k) - L_w w(k)$ $\frac{dx}{dt} = Ax + Bu + v$ Closed-loop system $\frac{dw}{dt} = A_w w \qquad v = C_w w$ $x(k+1) = (\Phi - \Gamma L)x(k) + \underbrace{(\Phi_{xw} - \Gamma L_w)}_{\approx 0^2} w(k)$ $\frac{d}{dt}\begin{pmatrix} x\\ w \end{pmatrix} = \begin{pmatrix} A & C_w\\ 0 & A_w \end{pmatrix} \begin{pmatrix} x\\ w \end{pmatrix} + \begin{pmatrix} B\\ 0 \end{pmatrix} u$ $w(k+1) = \Phi_w w(k)$ Sampling gives w uncontrollable from u! w observable? $\begin{pmatrix} x(k+1) \\ w(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & \Phi_{xw} \\ 0 & \Phi_{w} \end{pmatrix} \begin{pmatrix} x(k) \\ w(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k)$ Unmeasurable disturbances – Step input load Servo case $\Phi_w = 1$ i.e. v(k+1) = v(k) and $\Phi_{xw} = \Gamma$ Try first $u(k) = -L\hat{x}(k) + L_c u_c(k)$ $u(k) = -L\hat{x}(k) - \overbrace{L_{w}}^{=1} \hat{w}(k) = -L\hat{x}(k) - \hat{w}(k)$ The closed loop system $\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma(\hat{w}(k) + u(k)) + K(y(k) - C\hat{x}(k))$ $x(k+1) = (\Phi - \Gamma L)x(k) + \Gamma L\tilde{x}(k) + \Gamma L_c u_c(k)$ $\hat{w}(k+1) = \hat{w}(k) + K_w(y(k) - C\hat{x}(k))$ $\tilde{x}(k+1) = (\Phi - KC)\tilde{x}(k)$ y(k) = Cx(k)Integrator in the controller! L_{c} Process Process Disturbance Observer Observer State Observer

Servo case, cont'd

Observer error not reachable from u_c , i.e. cancellation of

$$A_o = \det(zI - \Phi + KC)$$

Closed loop system from reference to output

$$H_{cl}(z)=C(zI-\Phi+\Gamma L)^{-1}\Gamma L_c=L_crac{B(z)}{A_c(z)}$$

Open-loop pulse transfer function

Motor

 $x_1 = \varphi_1 - \varphi_2$

Impulse response

0utput 01

$$H(z)=C(zI-\Phi)^{-1}\Gamma=rac{B(z)}{A(z)}$$

A design example

 $x_2 = \omega_1 / \omega_0$

Time

00000

50

 J_2

 $x_3 = \omega_2 / \omega_0$

75

 φ_1

 J_1

 ω_1

25

No friction \Rightarrow Integrator $\Rightarrow y \neq 0$ after an impulse

Notice: Same zeros! Why?

Model and feedforward

Use a two-degree-of-freedom controller

Feedforward signal

$$u_{ff}(k) = \frac{H_m(q)}{H(q)} u_c(k)$$

Design

Open-loop system: $\omega_p = 1$ and $\zeta_p = 0.05$ Specifications: $\omega_m = 0.5$ and $\zeta_m = 0.7$ Sampling interval: $h = 0.5 \Rightarrow \omega_N = 6$

 $u(kh) = -L\hat{x}(kh \mid kh - h) + L_c u_c(kh)$ Desired closed loop poles (in continuous time)

$$(s^2 + 2\zeta_m \omega_m s + \omega_m^2) (s + \alpha_1 \omega_m) = 0 \quad \alpha_1 = 2$$

Observer design

$$(s^2 + 2\zeta_m \alpha_0 \omega_m s + (\alpha_0 \omega_m)^2) (s + \alpha_0 \alpha_1 \omega_m) = 0$$
 $\alpha_0 = 2$

Design

Feedback from observed states. Observer twice as fast as closed loop dynamics.

Summary

- State feedback
 - Reachability
 - Ackermann's formula
- Observers
 - Full model
 - Reduced order
 - Delays in the estimator
- General disturbances
- The servo case
- Two degree-of-freedom controller