
Lecture 3: State-feedback, observers, reference

values, and integrators

• Problem formulation

• Pole placement

• Observers

• Output feedback

• Reference values

• A larger example

Problem formulation

• Model: Continuous-time, sample with h [

x(kh+ h) = Φx(kh) + Γu(kh)

• Disturbances: Sporadic pulse disturbances x(0) = x0

• Criterion: x(t) → 0 reasonably fast with reasonable

inputs u. Choose closed loop poles

• Admissible controls: Linear controllers, all states available

More complicated problems later

Problem formulation cont’d

Design parameters

• Closed loop poles

• Sampling interval

Evaluation

• Compare x(t) and u(kh) with specifications

• Trade-off between control magnitude and speed of re-
sponse

• Subjective judgements

Example – Double integrator

x(kh+ h) =




1 h

0 1



 x(kh) +




h2/2

h



u(kh)

Linear state-feedback controller

u(kh) = −Lx(kh) = −l1x1(kh) − l2x2(kh)

Closed-loop system becomes

x(kh + h) = (Φ − ΓL)x(kh)

=




1− l1h

2/2 h− l2h
2/2

−l1h 1− l2h



 x(kh)

Characteristic equation

z2 +

(
l1h

2

2
+ l2h− 2

)

z+

(
l1h

2

2
− l2h+ 1

)

= 0



Example cont’d

Characteristic equation

z2 +

(
l1h

2

2
+ l2h− 2

)

z+

(
l1h

2

2
− l2h+ 1

)

= 0

Desired characteristic equation

z2 + p1z+ p2 = 0

Linear equations for l1 and l2

l1h
2

2
+ l2h− 2 = p1

l1h
2

2
− l2h+ 1 = p2

Solution

l1 =
1

h2
(1+ p1 + p2) l2 =

1

2h
(3+ p1 − p2)

General case

Basic problem:

Find L such that Φ − ΓL has prescribed eigenvalues

Solvable

\ (Φ, Γ) reachable
\ Wc = [Γ, ΦΓ, . . . ,Φn−1Γ] has full rank

• Matlab L = place(Phi,Gamma,neweigs)

• Unique solution, linear in li

• L depends on h

• How to choose the specifications?

– Use the continuous time counterpart

– Damping ζ and natural frequency ω (ω 0) of dominating

poles

Solution via controllable form

z = Tx, Φ̃ = TΦT−1, Γ̃ = TΓ

u = −L̃z = −L̃Tx = −Lx

det(zI − Φ) = A(z) det(zI − (Φ − ΓL)) = P(z)

Φ̃ =





−a1 −a2 ⋅ ⋅ ⋅ −an−1 −an

1 0 ⋅ ⋅ ⋅ 0 0
...

...
...

...

0 0 ⋅ ⋅ ⋅ 1 0





Γ̃ =





1

0
...

0





Desired characteristic equation obtained for

u = −L̃z = −


 l̃1 l̃2 . . . l̃n



 z

= −


 p1 − a1 p2 − a2 ⋅ ⋅ ⋅ pn − an



 z

• How to get T?

How to find T?

L = L̃T =


 p1 − a1 p2 − a2 ⋅ ⋅ ⋅ pn − an



T

W̃c = [TΓ, TΦT−1TΓ, . . . ,TΦn−1Γ] = TWc

Solvable for T if the system is reachable

W̃−1
c =





1 a1 ⋅ ⋅ ⋅ an−1

0 1 ⋅ ⋅ ⋅ an−2
...

...
...

0 0 ⋅ ⋅ ⋅ 1





T−1 = WcW̃
−1
c =



 Γ a1Γ + ΦΓ . . . an−1Γ + ⋅ ⋅ ⋅+ Φn−1Γ




L =


 p1 − a1 p2 − a2 ⋅ ⋅ ⋅ pn − an



 ⋅



 Γ a1Γ + ΦΓ . . . an−1Γ + ⋅ ⋅ ⋅+ Φn−1Γ



−1



Ackermann’s formula

A(Φ̃) = Φ̃n + a1Φ̃
n−1 + ⋅ ⋅ ⋅+ an I = 0

P(Φ̃) = Φ̃n + p1Φ̃
n−1 + ⋅ ⋅ ⋅+ pn I = (p1 − a1)Φ̃

n−1 + ⋅ ⋅ ⋅+ (pn − an)I

For controllable form and 0 ≤ k < n


 0 . . . 1



 Φ̃k =


 0 . . . 1 . . . 0





n−k

so that


 0 . . . 1



 P(Φ̃) =


 p1 − a1 p2 − a2 ⋅ ⋅ ⋅ pn − an



 = L̃

thus

L = L̃T =


 0 . . . 1




TP(Φ)T−1

︷ ︸︸ ︷

P(TΦT−1)T =


 0 . . . 1


TP(Φ)

=


 0 . . . 1



 W̃cW
−1
c P(Φ) =



0 . . . 1



W−1
c P(Φ)

Double integrator

Use the continuous time counterpart

s2 + 2ζ ω s+ω 2
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Change of ω (ωh = 0.44) xT(0) = [1 1], b) ω = 0.5, c) ω = 1,
d) ω = 2

Double integrator cont’d

Change of h (N)
b) N = 5, c) N = 10, d) N = 20

0 5 10

−2

0

In
p

u
t

(b)

0 5 10

−2

0

Time

In
p

u
t

(c)

0 5 10

0

2

O
u

tp
u

t

(a)

0 5 10

−2

0

Time

In
p

u
t

(d)

Double integrator cont’d

Other initial value xT(0+) = [1 1]
b) N = 5, c) N = 10, d) N = 20
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Rule of thumb: ωh =0.2 – 0.6



Deadbeat control

Choose P(z) = zn

Remaining design parameter h

Double integrator xT(0) = [1 1]
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b) h = 2, c) h = 1, d) h = 0.5

Observers

x(k+ 1) = Φx(k) + Γu(k)

y(k) = Cx(k)

Assume only the output available

• Direct calculation

• Kalman form

• Luenberger form

Main question:

How to choose the observer poles?

Reconstruction using dynamical model

Consider the model

x(k+ 1) = Φx(k) + Γu(k)

y(k) = Cx(k)

Introduce "feedback" from measured y(k)

x̂(k+ 1 p k) = Φ x̂(k p k− 1) + Γu(k) + K [y(k) − Cx̂(k p k− 1)]

Form the estimation error x̃ = x − x̂

x̃(k+1 p k) = Φ x̃(k p k−1)−KCx̃(k p k−1) = [Φ−KC]x̃(k p k−1)

• Choose K to get good convergence

• Any eigenvalues possible, provided Wo full rank

• Trade-off against noise amplification

Luenberger observer

Reduced order observer

Introduce direct term in the observer

x̂(k p k) = Φ x̂(k− 1 p k− 1) + Γu(k− 1)

+ K
(

y(k) − C(Φ x̂(k− 1 p k− 1) + Γu(k− 1))
)

= (I − KC) (Φ x̂(k− 1 p k− 1) + Γu(k− 1)) + K y(k)

Reconstruction error can be written as

x̃(k p k) = x(k) − x̂(k p k) = (Φ − KCΦ)x̃(k− 1 p k− 1)

Look at

ỹ(k) = y(k) − Cx̂(k p k) = Cx̃(k p k) = C(I − KC)Φ x̃(k− 1 p k− 1)

= (C − CKC)Φ x̃(k− 1 p k− 1) = (I − CK )
︸ ︷︷ ︸

=0?

CΦ x̃(k− 1 p k− 1)



Why reduced order?

New coordinates

z =




y

z̄



 =




C

C̄



 x = Tx

The error can be written as

z̃(k p k) =




ỹ(k p k)

˜̄z(k p k)



 =




0

˜̄z(k p k)





where dim ˜̄z = dim x − dim y= n− p

Only ˆ̄z(k p k) = . . . needed

Output feedback
u yˆ x 

Process

Observer

−L

x̂(k+ 1 p k) = Φ x̂(k p k− 1) + Γu(k) + K (y(k) − Cx̂(k p k− 1))

u(k) = −Lx̂(k p k− 1)

x̂(k+ 1 p k) = (Φ − KC − ΓL)x̂(k p k− 1) + K y(k)

u(k) = −Lx̂(k p k− 1)

The transfer function of the controller

Gr(z) = −L(zI − Φ + ΓL + KC)−1K

Closed loop system

x(k+ 1) = Φx(k) + Γu(k)

x̃(k+ 1 p k) = (Φ − KC)x̃(k p k− 1)

u(k) = −L(x(k) − x̃(k p k− 1))

Eliminate u(k)



x(k+ 1)

x̃(k+ 1 p k)



 =




Φ − ΓL ΓL

0 Φ − KC








x(k)

x̃(k p k− 1)





Separation

Process poles: Ar(z) = det(zI − Φ + ΓL)

Observer poles: Ao(z) = det(zI − Φ + KC)

May also use observer with direct term

Example – Double integrator

Measured states

Estimated states

a) Kalman
b) Luenberger
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General disturbances

Dynamical systems with initial values gives the disturbance v

dx

dt
= Ax + Bu+ v

dw

dt
= Aww v = Cww

d

dt




x

w



 =




A Cw

0 Aw








x

w



+




B

0



u

Sampling gives



x(k+ 1)

w(k+ 1)



 =




Φ Φxw

0 Φw








x(k)

w(k)



+




Γ

0



u(k)

General disturbances, cont’d

Combined feedback and feedforward

u(k) = −Lx(k) − Lww(k)

Closed-loop system

x(k+ 1) = (Φ − ΓL)x(k) + (Φxw − ΓLw)
︸ ︷︷ ︸

(0?

w(k)

w(k+ 1) = Φww(k)

w uncontrollable from u! w observable?

Unmeasurable disturbances – Step input load

Φw = 1 i.e. v(k+ 1) = v(k) and Φxw = Γ

u(k) = −Lx̂(k) −

=1
︷︸︸︷

Lw ŵ(k) = −Lx̂(k) − ŵ(k)

x̂(k+ 1) = Φ x̂(k) + Γ(ŵ(k) + u(k)) + K (y(k) − Cx̂(k))

ŵ(k+ 1) = ŵ(k) + Kw(y(k) − Cx̂(k))

Integrator in the controller!

∑

Process
u

L
yˆ x 

State

Observer

Disturbance

Observer

∑ ∑

ε

−
ˆ v 

v

−

Servo case

Try first
u(k) = −Lx̂(k) + Lcuc(k)

The closed loop system

x(k+ 1) = (Φ − ΓL)x(k) + ΓLx̃(k) + ΓLcuc(k)

x̃(k+ 1) = (Φ − KC)x̃(k)

y(k) = Cx(k)

∑−L

Observer

Process
u

L c

y

u c

ˆ x 



Servo case, cont’d

Observer error not reachable from uc, i.e. cancellation of

Ao = det(zI − Φ + KC)

Closed loop system from reference to output

Hcl(z) = C(zI − Φ + ΓL)−1ΓLc = Lc
B(z)

Ac(z)

Open-loop pulse transfer function

H(z) = C(zI − Φ)−1Γ =
B(z)

A(z)

Notice: Same zeros! Why?

Model and feedforward

Use a two-degree-of-freedom controller

∑ ∑
x m

u ff

ˆ x 
Observer

L Process

−

u fb y

  uc   Model and
Feedforward 
  Generator

Reference trajecto-
ries for states

Controller

Feedforward signal

xm(k+ 1) = Φmxm(k) + Γmuc(k)

ym(k) = Cmxm(k)

u(k) = L(xm(k) − x̂(k)) + u f f (k)

u f f (k) =
Hm(q)

H(q)
uc(k)

A design example

I
Motor

ω1 ω2

ϕ 1 ϕ 2

J 1 J 2

x1 = ϕ1 −ϕ2 x2 = ω 1/ω 0 x3 = ω 2/ω 0

Impulse response
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No friction [ Integrator [ y ,→ 0 after an impulse

Design

Open-loop system: ω p = 1 and ζ p = 0.05

Specifications: ωm = 0.5 and ζm = 0.7

Sampling interval: h = 0.5 [ ω N = 6

u(kh) = −Lx̂(kh p kh− h) + Lcuc(kh)

Desired closed loop poles (in continuous time)

(s2 + 2ζmωms+ω 2m) (s+α 1ωm) = 0 α 1 = 2

Observer design
(
s2 + 2ζmα 0ωms+ (α 0ωm)

2
)
(s+α 0α 1ωm) = 0 α 0 = 2



Design

Feedback from observed states. Observer twice as fast as

closed loop dynamics.
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Summary

• State feedback

– Reachability

– Ackermann’s formula

• Observers

– Full model

– Reduced order

– Delays in the estimator

• General disturbances

• The servo case

• Two degree-of-freedom controller


