Lecture 2: z-transform and I/0 models

o Shift operator

¢ 1/O models

e Direct sampling

e z-transform

e Poles and zeros

e Selection of sampling interval

e Frequency response of sampled-data systems
e Lyapunov theory for discrete-time systems

Shift-operator
Forward shift operator
qf (k) = f(k+1)
Backward shift (delay) operator
a7 f(R) = F(k=1)
The range of the shift operator is double infinite sequences

Compare with the differential operator p = 4

Shift-operator calculus

y(k+na)+ay(k+na—1)+ - + anay(k)
= bou(k +nb) + - + bppu(k)
where na > nb. Using the shift operator gives

(@ +a1g™ 4 -+ an)y(R) = (@™ + - + by )u(k)
Introduce the polynomials

A(Z) =2" +a12" 1+ - Fapg
B(2) = bpz" + 612" 1 - 1 by

the difference equation can be written as

A(q)y(k) = B(q)u(k)

Reciprocal polynomials

y(k+na)+aiy(k+na—1)+ - + anay(k)
= bou(k +nb) + -+ + bypu(k)
can be written as
y(k) +ary(k—1)+ - + anay(k — na)
=bou(k—d)+ - + bypu(k —d —nb)
Pole excess d = na — nb
Reciprocal polynomial

A*(Z) — 1+a12+ +anazna — ZnaA(Z_l)
The system description in the backward shift operator

A*(q7")y(k) = B* (¢ u(k —d)

) = e ulk - d)




Pulse-transfer function operator
State-space system
x(k+1) = qx(k) = Px(k) + Tu(k)
Use the shift operator
(I — ®)x(k) = Tu(k)
Eliminate x(%)
y(k) = Cx(k) + Du(k) = (C(qI — ®)™'T" + D)u(k)
Pulse-transfer operator
H(q)=C(qgl —®)"'T+ D
In the backward-shift operator

H (g Y=C(I—q'®)'¢"'T + D = H(q)

SISO systems

H(q)=C(qgl —®)'IT'+D = —*=

If no common factors
degA =n
A(q) = det[q] — @]
and
y(k) +ary(k—1) +--- +a,y(k —n)
= bou(k) +---+ byu(k —n)

where a; are the coefficients of the characteristic polynomial of
(OR

Poles, zeros, and system order

H(q)=C(ql —®)'I'+D = %
Poles: A(q) =0
Zeros: B(q) =0

System order: deg A(q)

Important to use the forward shift operator for poles/zeros,
system order, and stability.

The backward shift operator is suited for causality considera-
tions.

Example — Double integrator with delay

h =1and t = 0.5 gives

11 0.375 0.125
@ = [0 1] = [ 0.5 ] Lo = [ 0.5 ]

Then
H(q)=C(ql —®) (T +T1g™")
g—1 1
_[1 0] 0 g-1 [0.125+0.375q—1]
- (g—1)2 0.5+ 0.5¢7*
0.125(¢> +6g+1)  0.125(¢ 1 +6g2+q°)
~oal®-2¢+1)  1-2¢'+gq?
Order: 3

Poles: 0, 1, and 1
Zeros: -3+ /8




How to get H(q) from G(s)?
Use Table 2.1

Zero-order hold sampling of a continuous-time system, G(s).

Hiq) = b1g" ' +byq" * + - + b,
q qn+alqn—1+...+an
G(s) H(q)

1 _h

s -1

1 2(g+1)

s? 2(q-1)?

a_ 1—exp(—ah)

s+a q—exp(—ah)

z-transform

Definition of z-transform
Consider the discrete-time signal { f(kk) : £ =0,1, ...}.

Z(F(kh) = F(2) = 3 f(kh)z™

The inverse transform is given by

_ 1 k—1
f(kh) = 557 %F(z)z dz
where the contour of integration encloses all singularities of
F(z). Maps a semi-infinite time sequence into a function of a
complex variable

Example
Let y(kh) = kh for k > 0. Then

Y(2) =0+ hz ' 4+2h272 4 ...
=h(z'+22+ -
hz
(z—1)?

e Similarities with Laplace transform
e Common in applied mathematics
e How the theory of sampled-data systems started

Properties of z-transform
1. Definitior;(.)
F(z2) =) f(kh)z™
k=0
2. Time shift.
g "f=z"F

Z{q"f} =2"(F — F1)
where Fi(z) = 337 f(jh)z™

3. Initial value theorem.
4. Final-value theorem.
5. Convolution.

Z(fxg)=2)Y_ f(n)g(k—n)=(Zf)(Zg)




Pulse-transfer function

x(k + 1) = ®x(k) + T'u(k)
y(k) = Cx(k) + Du(k)
Take the z-transform of both sides

z (Z 27 *x (k) — x(O)) = Z Dz Fx(k) + Z z"*u(k)

Hence
2(X (2) —x(0)) = PX (2) + TU(2)
X (2) = (21 — ®) Y(2x(0) + TU (2))

Y(z) = C(zI — ®)'2x(0) + (C(2I — ®)7'T' + D)U(2)
Pulse-transfer function
H(z)=C(zI —®)'I'+D

Why both ¢ and 2?

Could be sufficient with only the shift operator q
Many books contain the z-transform

Must be aware of the difficulties with z-transform

Remember q operator and z complex variable

A warning

IllUse the z-transform tables correctly!!!!

f(kh) Lf(t) Zf(kh)
o(k) (pulse) - 1
1 k>0 (step) % zjl
kh < e
s2 (z—1)2
1 9 1 h?z(z + 1)
g (kh) 3 2(z—1)3
e—kRIT T Z
1+sT z—e T .
1 — o kh/T 1 z(1—eMT)

s(1+sT) (z—1)(z—eMT)

Warning. Notice that Zf in the table does not give the zero-
order-hold sampling of a system with the transfer function Lf.

Calculation of H(z) given G (s) using z-transform

tables

{u(kh)} Zerﬁ;‘izder v [ 4 © y(t) _~{»(kh)}

| H(z) |
[ 1

1. Determine the step response of the system with the
transfer function G(s).

2. Determine the corresponding z-transform of the step
response using the table.

3. Divide by the z-transform of the step function.

G(s)
s
- H(z)=(1-21Y(2)

Y(s) = - Y =2(L1Y)




Double integrator — Sampling using table

Transfer function G(s) = 1/s?

Introduce the step

1
Y(S) = 3_3
Use the table Koz 4 1)
5 1y P22+
Y=2Z(LY)= 2e—1)¢
Get the pulse transfer function
e h?(z+1
H(z)=(1-2")Y(2) = ﬁ

Formula for H (z)
The following formula can be derived:

z—1 1 [7F® eh  G(s)

ds
; h
z 27 ), i 2—€" s

H(z) =

If G(s) goes to zero at least as fast as |s|~! for a large s and
has distinct poles (none at the origin)

Hez =Y Res{eSh_l}G(s)

z—esh s
S=S§;

where s; are the poles of G(s)
Multiple poles influence the calculations of the residues.

Modified z-transform

Can be used to determine intersample behavior

Definition: Modified z-transform

F’(z,m)zZz‘kf(kh—h-l—mh), 0<m<1

k=0

The inverse transform is given by

1 n n—1
f(nh—h+mh)—2—m,/rF(z,m)z dz

I" encloses all singularities of the integrand

Interpretation of poles and zeros

Poles:
e A pole z = a is associated with the time function z(k) = a*
e A pole z = a is an eigenvalue of ®

Zeros:

e A zero z = a implies that the transmission of the input
u(k) = a”* is blocked by the system

e A zero is related to how inputs and outputs are coupled to
the states




Transformation of poles 1;(®) = (4
© ®

-O-0-0-0-0 W)
~-0—0—0—0—0—f—0—0-0

-O0-0-0-0-0H —(DN

1 oy

New evidence of alias problem

z=c¢"

Several points in the s-plane is mapped into the same point in
the z-plane.
The map is not bijective

So p1x KJ
—-r/h

Sampling of a second order system

o3
s2 + 28 wos + w3
Poles of the discrete-time system are given by the mapping

1F

Imaginary axis
o
o

Real axis

Transformation of zeros

More difficult than poles

In general, more sampled zeros than continuous

For short sampling periods z; ~ %"

For large s then G(s) ~ s~

where d = deg A(s) — deg B(s)

The r = d — 1 sampling zeros go to the zeros of the polynomi-
als Zy

Zq

1

z+1

2+4z+1

241122 +112+1

2t 4+262% + 6622 + 262+ 1

a ~ 0N = Q




Systems with unstable inverse

Continuous-time system is nonminimum phase if it has right
half-plane zeros or time delays.

A discrete-time system is in many books defined to be non-
minimum phase if it has zeros outside the unit disc

We will use the following notation:
Definition — Unstable inverse
A discrete-time system has an unstable inverse if it has zeros

outside the unit disc

. ? .
Nonminimum phase < Unstable inverse

Selection of sampling period

Number of samples per

rise time

N,

T,
=" ~4-10
h

The rise times of the
signals are T, = 1.

a) N. = 1,b)N, = 2
c) N.=4,d) N, =38
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Second order system

T,
Nr = -r ~ 4 — 10
h
Corresponds to (for @ ®)
dominating modes) 1| T — o Y FC
woh ~ 0.2 — 0.6 : :
=050 =18gives” [ ...
T, =1; ’
a)jh = 0.125 (wogh = U 0
0.23) " mme ' e
. Time Time

b) h = 0.25 (woh = 0.46)
¢) h = 0.5 (woh = 0.92)
d) h = 1.0 (woh = 1.83)

Imaginary axis

Pole-zero variation with A

G(s) =

1

(s+1)(s2+s+1)

h=0+

X h=0+

-4 -3

-2

Real axis

h =0.0001, 0.2, 0.5, 1, 2, and 3




Nyquist and Bode diagrams
Nyquist curve: H (e'®?)
for h € [0,7], i.e. up to wy
e Periodic
¢ Interpretation
e Higher order harmonics
e Discuss more in connection with Chapter 7

Example

1
G(s) = s2414s+1 ————
Zero-order hold sampling 1 ]
h=04 § \
0.066z + 0.055 .
H(z2) = i - . |

~ 22-1.450z+ 0.571

Continuous-time (dashed),
discrete-time (full)

Phase

A. M. Lyapunov
1857-1918

Lyapunov theory

Consider the system
x(k+1)=f(x(k), f(0)=0

Monotonic convergence ||x(%2 + 1)|| < |lx(k)|| a too strong
condition for stability

Find other "norm", a Lyapunov function V(x)
e V(x) is continuous in x and V(0) =0
e V(x) is positive definite
e AV(x) =V(f(x)) — V(x) is negative definite
e V(x) > 0, |x|]— o0

Existence of Lyapunov function implies asymptotic stability for
the solution x = 0




Geometric interpretation

x(k+1) = f(x(k)), f(0)=0
L %2

Vix(k +1) T+ 1)

e

(_7 .

Vx(k))

x(k)

Linear system

x(k + 1) = Dx(k)
V(x) =«"Px P>0
AV (x) = V(®x) — V(x) = xTOTPOx — xT Px
=7 (®TP® — P)x = —x" Qx

V is a Lyapunov function iff there exists a P > 0 that satisfies
the Lyapunov equation

TP -P=—-Q Q>0

State x;

Summary
Piecewise constant input and periodic sampling gives time-
invariant discrete-time system
Solution of the system equation, A(®)
Shift operator ¢ and pulse transfer operator
z-transform and pulse transfer function
Be careful with z-transform tables
Poles, zeros, and system order
Selection of sampling period

T,
N,=f~4—10
woh ~ 0.2 - 0.6

Frequency function




