
Lecture 2: z-transform and I/O models

• Shift operator

• I/O models

• Direct sampling

• z-transform

• Poles and zeros

• Selection of sampling interval

• Frequency response of sampled-data systems

• Lyapunov theory for discrete-time systems

Shift-operator

Forward shift operator

q f (k) = f (k+ 1)

Backward shift (delay) operator

q−1 f (k) = f (k− 1)

The range of the shift operator is double infinite sequences

Compare with the differential operator p = d
dt

Shift-operator calculus

y(k+ na) + a1y(k+ na− 1) + ⋅ ⋅ ⋅ + anay(k)
= b0u(k+ nb) + ⋅ ⋅ ⋅ + bnbu(k)

where na ≥ nb. Using the shift operator gives

(qna + a1qna−1 + ⋅ ⋅ ⋅ + ana)y(k) = (b0qnb + ⋅ ⋅ ⋅ + bnb)u(k)

Introduce the polynomials

A(z) = zna + a1zna−1 + ⋅ ⋅ ⋅ + ana
B(z) = b0znb + b1znb−1 + ⋅ ⋅ ⋅ + bnb

the difference equation can be written as

A(q)y(k) = B(q)u(k)

y(k) = B(q)
A(q)u(k)

Reciprocal polynomials

y(k+ na) + a1y(k+ na− 1) + ⋅ ⋅ ⋅ + anay(k)
= b0u(k+ nb) + ⋅ ⋅ ⋅ + bnbu(k)

can be written as

y(k) + a1y(k− 1) + ⋅ ⋅ ⋅ + anay(k− na)
= b0u(k− d) + ⋅ ⋅ ⋅ + bnbu(k− d− nb)

Pole excess d = na− nb
Reciprocal polynomial

A∗(z) = 1+ a1z+ ⋅ ⋅ ⋅ + anazna = znaA(z−1)

The system description in the backward shift operator

A∗(q−1)y(k) = B∗(q−1)u(k− d)

y(k) = B
∗(q−1)
A∗(q−1)u(k− d)



Pulse-transfer function operator

State-space system

x(k+ 1) = qx(k) = Φx(k) + Γu(k)

Use the shift operator

(qI − Φ)x(k) = Γu(k)

Eliminate x(k)

y(k) = Cx(k) + Du(k) =
(

C(qI − Φ)−1Γ + D
)

u(k)

Pulse-transfer operator

H(q) = C(qI − Φ)−1Γ + D

In the backward-shift operator

H∗(q−1) = C(I − q−1Φ)−1q−1Γ + D = H(q)

SISO systems

H(q) = C(qI − Φ)−1Γ + D = B(q)
A(q)

If no common factors

deg A = n
A(q) = det[qI − Φ]

and

y(k) + a1y(k− 1) + ⋅ ⋅ ⋅+ any(k− n)
= b0u(k) + ⋅ ⋅ ⋅+ bnu(k− n)

where ai are the coefficients of the characteristic polynomial of
Φ.

Poles, zeros, and system order

H(q) = C(qI − Φ)−1Γ + D = B(q)
A(q)

Poles: A(q) = 0
Zeros: B(q) = 0
System order: deg A(q)

Important to use the forward shift operator for poles/zeros,
system order, and stability.

The backward shift operator is suited for causality considera-

tions.

Example – Double integrator with delay

h = 1 and τ = 0.5 gives

Φ =






1 1

0 1





 Γ1 =






0.375

0.5





 Γ0 =






0.125

0.5







Then

H(q) = C(qI − Φ)−1(Γ0 + Γ1q
−1)

=


1 0













q− 1 1

0 q− 1









(q− 1)2








0.125+ 0.375q−1
0.5+ 0.5q−1









=0.125(q
2 + 6q+ 1)

q(q2 − 2q+ 1) = 0.125(q
−1 + 6q−2 + q−3)

1− 2q−1 + q−2

Order: 3
Poles: 0, 1, and 1

Zeros: −3±
√
8



How to get H(q) from G(s)?
Use Table 2.1

Zero-order hold sampling of a continuous-time system, G(s).

H(q) = b1q
n−1 + b2qn−2 + ⋅ ⋅ ⋅+ bn
qn + a1qn−1 + ⋅ ⋅ ⋅+ an

G(s) H(q)
1
s

h
q−1

1
s2

h2(q+1)
2(q−1)2

a
s+a

1−exp(−ah)
q−exp(−ah)

z-transform

Definition of z-transform

Consider the discrete-time signal { f (kh) : k = 0, 1, . . .}.

Z( f (kh)) = F(z) =
∞
∑

k=0
f (kh)z−k

The inverse transform is given by

f (kh) = 1

2π i

∮

F(z)zk−1 dz

where the contour of integration encloses all singularities of

F(z). Maps a semi-infinite time sequence into a function of a
complex variable

Example

Let y(kh) = kh for k ≥ 0. Then

Y(z) = 0+ hz−1 + 2hz−2 + ⋅ ⋅ ⋅

= h(z−1 + 2z−2 + ⋅ ⋅ ⋅

= hz

(z− 1)2

• Similarities with Laplace transform

• Common in applied mathematics

• How the theory of sampled-data systems started

Properties of z-transform

1. Definition.

F(z) =
∞
∑

k=0
f (kh)z−k

2. Time shift.

Zq−n f = z−nF
Z{qn f} = zn(F − F1)
where F1(z) =

∑n−1
j=0 f ( jh)z− j

3. Initial value theorem.

4. Final-value theorem.

5. Convolution.

Z( f ∗ �) =Z
k
∑

n=0
f (n)�(k− n) = (Z f )(Z�)



Pulse-transfer function

x(k+ 1) = Φx(k) + Γu(k)
y(k) = Cx(k) + Du(k)

Take the z-transform of both sides

z

( ∞
∑

k=0
z−kx(k) − x(0)

)

=
∞
∑

k=0
Φz−kx(k) +

∞
∑

k=0
Γz−ku(k)

Hence

z(X (z) − x(0)) = ΦX (z) + ΓU (z)
X (z) = (zI − Φ)−1(zx(0) + ΓU (z))

Y(z) = C(zI − Φ)−1zx(0) + (C(zI − Φ)−1Γ + D)U (z)

Pulse-transfer function

H(z) = C(zI − Φ)−1Γ + D

Why both q and z?

• Could be sufficient with only the shift operator q

• Many books contain the z-transform

• Must be aware of the difficulties with z-transform

• Remember q operator and z complex variable

A warning

!!!Use the z-transform tables correctly!!!!

f (kh) L f (t) Z f (kh)
δ (k) (pulse) – 1

1 k ≥ 0 (step)
1

s

z

z− 1
kh

1

s2
hz

(z− 1)2
1

2
(kh)2 1

s3
h2z(z+ 1)
2(z− 1)3

e−kh/T
T

1+ sT
z

z− e−h/T

1− e−kh/T 1

s(1+ sT)
z(1− e−h/T )

(z− 1)(z− e−h/T )

Warning. Notice that Z f in the table does not give the zero-
order-hold sampling of a system with the transfer function L f .

Calculation of H(z) given G(s) using z-transform

tables
Zero-order   

hold

u t( )u kh( ){ } y t( ) y kh( ){ }
G s( )

  
H z( )

1. Determine the step response of the system with the

transfer function G(s).
2. Determine the corresponding z-transform of the step

response using the table.

3. Divide by the z-transform of the step function.

Y(s) = G(s)
s

→ Ỹ = Z(L−1Y)

→ H(z) = (1− z−1)Ỹ(z)



Double integrator – Sampling using table

Transfer function G(s) = 1/s2

Introduce the step

Y(s) = 1
s3

Use the table

Ỹ =Z(L−1Y) = h
2z(z+ 1)
2(z− 1)3

Get the pulse transfer function

H(z) = (1− z−1)Ỹ(z) = h
2(z+ 1)
2(z− 1)2

Formula for H(z)
The following formula can be derived:

H(z) = z− 1
z

1

2π i

∫ γ +i∞

γ −i∞

esh

z− esh
G(s)
s
ds

If G(s) goes to zero at least as fast as psp−1 for a large s and

has distinct poles (none at the origin)

H(z) =
∑

s=si

1

z− esh Res
{

esh − 1
s

}

G(s)

where si are the poles of G(s)
Multiple poles influence the calculations of the residues.

Modified z-transform

Can be used to determine intersample behavior

Definition: Modified z-transform

F̃(z,m) =
∞
∑

k=0
z−k f (kh− h+mh), 0 ≤ m ≤ 1

The inverse transform is given by

f (nh− h+mh) = 1

2π i

∫

Γ

F̃(z,m)zn−1dz

Γ encloses all singularities of the integrand

Interpretation of poles and zeros

Poles:

• A pole z = a is associated with the time function z(k) = ak

• A pole z = a is an eigenvalue of Φ

Zeros:

• A zero z = a implies that the transmission of the input

u(k) = ak is blocked by the system

• A zero is related to how inputs and outputs are coupled to

the states



Transformation of poles λ i(Φ) = eλ i(A)h

ωN

−ω N

−ω N

−ω N

ωN

ωN

s z

New evidence of alias problem

z = esh
Several points in the s-plane is mapped into the same point in
the z-plane.

The map is not bijective

x

x

x

p

3π / h

π / h

    −3π / h

    − π / h
    S0

x x

x

p1

    p1

    p2

    p2

Sampling of a second order system

ω 20
s2 + 2ζ ω 0s+ω 20

Poles of the discrete-time system are given by the mapping
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Transformation of zeros

More difficult than poles

In general, more sampled zeros than continuous
For short sampling periods zi ( esih
For large s then G(s) ( s−d
where d = deg A(s) − deg B(s)
The r = d − 1 sampling zeros go to the zeros of the polynomi-
als Zd

d Zd

1 1

2 z+ 1
3 z2 + 4z+ 1
4 z3 + 11z2 + 11z+ 1
5 z4 + 26z3 + 66z2 + 26z+ 1



Systems with unstable inverse

Continuous-time system is nonminimum phase if it has right

half-plane zeros or time delays.

A discrete-time system is in many books defined to be non-

minimum phase if it has zeros outside the unit disc

We will use the following notation:

Definition – Unstable inverse
A discrete-time system has an unstable inverse if it has zeros

outside the unit disc

Nonminimum phase
?Q Unstable inverse

Selection of sampling period

Number of samples per

rise time

Nr =
Tr

h
( 4− 10

The rise times of the
signals are Tr = 1.
a) Nr = 1, b) Nr = 2,
c) Nr = 4, d) Nr = 8
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Second order system

Nr =
Tr

h
( 4− 10

Corresponds to (for

dominating modes)

ω 0h ( 0.2− 0.6

ζ = 0.5, ω 0 = 1.83 gives

Tr = 1;
a) h = 0.125 (ω 0h =
0.23)
b) h = 0.25 (ω 0h = 0.46)
c) h = 0.5 (ω 0h = 0.92)
d) h = 1.0 (ω 0h = 1.83)
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Pole-zero variation with h

G(s) = 1

(s+ 1)(s2 + s+ 1)

−4 −3 −2 −1 0 1

−1

0

1

Real axis

Im
a
g
in

a
ry

 a
x
is

h=0+ h=0+ h=0+

h = 0.0001, 0.2, 0.5, 1, 2, and 3



Nyquist and Bode diagrams

Nyquist curve: H(eiωh)
for ωh ∈ [0,π ], i.e. up to ω N

• Periodic

• Interpretation

• Higher order harmonics

• Discuss more in connection with Chapter 7

Example

G(s) = 1

s2 + 1.4s+ 1
Zero-order hold sampling
h = 0.4

H(z) = 0.066z+ 0.055
z2 − 1.450z+ 0.571

Continuous-time (dashed),
discrete-time (full)
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A. M. Lyapunov

1857–1918

Lyapunov theory

Consider the system

x(k+ 1) = f (x(k)), f (0) = 0

Monotonic convergence qx(k + 1)q < qx(k)q a too strong

condition for stability

Find other "norm", a Lyapunov function V (x)

• V (x) is continuous in x and V (0) = 0
• V (x) is positive definite

• ∆V (x) = V ( f (x)) − V (x) is negative definite

• V (x) → ∞, pxp → ∞
Existence of Lyapunov function implies asymptotic stability for
the solution x = 0



Geometric interpretation

x(k+ 1) = f (x(k)), f (0) = 0
x 2

x 1

x (k + 1)

V(x(k))

    x(k)
    V(x(k + 1))

Linear system

x(k+ 1) = Φx(k)
V (x) = xTPx P > 0

∆V (x) = V (Φx) − V (x) = xTΦTPΦx − xTPx
= xT

(

ΦTPΦ − P
)

x = −xTQx
V is a Lyapunov function iff there exists a P > 0 that satisfies
the Lyapunov equation

ΦTPΦ − P = −Q Q > 0

Example

Φ =






0.4 0

−0.4 0.6





 Q =






1 0

0 1







−2 0 2
−2

0

2

State x1

S
ta

te
 x

2

Summary

• Piecewise constant input and periodic sampling gives time-

invariant discrete-time system

• Solution of the system equation, λ(Φ)
• Shift operator q and pulse transfer operator

• z-transform and pulse transfer function

• Be careful with z-transform tables

• Poles, zeros, and system order

• Selection of sampling period

Nr =
Tr

h
( 4− 10

ω 0h ( 0.2− 0.6

• Frequency function


