
Positive Systems: An Introduction

Christian Grussler

April 24, 2013

Christian Grussler Positive Systems: An Introduction

Outline

1 Positive Systems

2 Non-negative matrices

3 Stability and Robustness

4 Feedback Control

5 Positive Realization

6 Model Reduction

7 Further Positivity Definitions

Christian Grussler Positive Systems: An Introduction

Positive Systems

Let us consider a continuous linear time-invariant system

{

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

with x ∈ Rn, u ∈ Rm and y ∈ Rk.

Definition: Positive system

A linear system (A,B,C,D) is called (internally) positive if and
only if its state and output are non-negative for every non-negative
input and every non-negative initial state.

Theorem: Positivity [Luenberger, 1979]

A (cont.) linear system (A,B,C,D) is positive if and only if A is a
Metzler-matrix and B,C,D = 0.
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”[...]the positivity property just defined, is always nothing but the
immediate consequence of the nature of the phenomenon we are
dealing with. A huge number of examples are just before our
eyes.” (Farina, 2002)

Network flows: traffic, transport, communication, etc.

Social science: population models

Biology/Medicine: Nitrade models, proteins, etc.

Economy: stochastic models, money flow, etc.

Discretization of PDEs: heat equation

Process Control

Involves at least three of our LCCCgroups:
−→ PowerWindBuild, DistTraffic, EmbedCloud.
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Example: Compartmental System
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bijuj(t)
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Non-negative matrices

Theorem: Perron-Frobenius (1907,1912)

Let A � 0, then there exists a λ0 > 0 and a x0 � 0 such that

1 Ax0 = λ0x0

2 λ0 > |λ|, ∀λ ∈ σ(A) \ {λ0}.

In case of A = 0, the same statements can be made by replacing
the strict relations with ≥ and =, respectively.

Remark: If A � 0, then λ0 and the number of non-negative
eigenvectors is simple.
Moreover, the dominant eigenvalues of a non-negative matrix A

are all the roots of λk − ρ(A)k = 0 for some k = 1, . . . , n.
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Karpelevich: On the characteristic roots of matrices with
non-negative elements (1951).
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The intersections points are: ρe2πi
a
b , where a and b are coprime

integers with 0 ≤ a ≤ b ≤ n, n > 1.
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, with
b1 ≤ b2, 0 ≤ s ≤ 1.
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Stability

Berman and Plemmons: Nonnegative Matrices in the
Mathematical Sciences.

The Metzler-matrix property gives a scalable stability verification.
The following are equivalent:

A is Hurwitz

∃D > 0 diagonal : AD +DAT < 0

∃ξ ∈ Rn
>0 : Aξ�0

(−A)−1=0
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Robustness: D-Stability and connectively stable

Farina and Rinaldi: Positive Linear Systems.

Theorem: D-stability

Every positive system is D-stable, i.e. if ẋ(t) = Ax(t) is stable,
then also ẋ(t) = DAx(t), with diagonal D > 0 remains stable.

Theorem: Connectively stable

Every positive system is connectively stable, i.e. if A is Hurwitz,
then also A−∆A is Hurwitz, with 0 ≤ ∆aij ≤ aij .
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Robustness: Structured Uncertainty

Son and Hinrichsen: Robust Stability of Positive Continuous Time
Systems (2007).

A norm ‖ · ‖ on Kn is said to be monotonic, if it satisfies

|x| 5 |y| ⇒ ‖x‖ ≤ ‖y‖.

Theorem: Real stability radius

Suppose A ∈ Rn×n is a Hurwitz Metzler-matrix, D ∈ Rn×l
+ ,

E ∈ R
q×n
+ and Cl,Cq are equipped with monotonic norms. Then

rC(A;D,E) = rR(A;D,E) = rR+
(A;D,E) = ‖EA−1D‖−1

ind
,

where rK(A;D,E) = inf{‖∆‖ind; ∆ ∈ Kl×q, µ(A+D∆E) ≥ 0}.
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Control: Feedback

Tanaka and Langbort: The Bounded Real Lemma for Internally
Positive Systems and H-Infinity Structured Static State Feedback
(2011).

Similar, as before, a diagonal solution exists for the bounded real
lemma:

‖G‖∞ < γ ⇔ ∃P > 0 diagonal :

(
ATP + PA+ CTC PB

BTP −γ2I

)

< 0

Hence, considering the positive system

ẋ = Ax+B1w +B2u

z = C1x+D1w +D2u

with feedback law u = Kx, we can minimize the gain from w to z

under the constraint of positivity-preservation. This even allows to
assign a structure to K.
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Control: Feedback

Ebihara, Peaucelle, and Denis Arzelier: Optimal L1-Controller
Synthesis for Positive Systems and Its Robustness Properties
(2012).

Moreover, if B1, D1 � 0, then the optimal solution K? is robust
under the variation over B1, D1 = 0.

For the static output-feedback-case with u = ky look at
Rami: Solvability of static output-feedback stabilization for LTI
positive systems (2011).

Questions:

How to obtain the same results independent of a positive
realization?

When is an optimal solution one, that preserves positivity?

What can be done with PID-control?
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Realizability

Ohta, Maeda, and Kodama: Reachability, observability, and
realizability of continuous-time positive systems (1984).

In the following we consider the SISO system (A, b, c).

Definition: Reachable cone

Let R be the set of all points that can be reached within finite
time from the origin by nonnegative inputs, i.e.

R = cone(b, Ab,A2b, . . . )

Definition: Observable cone

Let O be the set of all states, that cause a nonnegative output for
all k ∈ N if u(t) = 0, i.e.

O :=
{

x|cTAkx ≥ 0, k = 0, 1, . . .
}

,
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Theorem: Positive Realization

Let (A, b, c) be a minimal realization of transfer function H(z).
Then H(z) has a positive realization if and only if there exists a
polyhedral proper cone K such that

AK ⊂ K

R ⊂ K ⊂ O.

Remark: Once K is found, we can denote by KM the matrix
spanning the cone K. Then a positive realization (A+, b+, c+) is
given by

AKM = KMA+, b = KMb+, c+ = cKM .
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Obviously, R is A-invariant and because of the non-negativity of
the impulse response, we have that R ⊂ O. However, R is not
always polyhedral!
In fact there are systems with non-negative impulse response,
which do not allow for a positive realization:

A =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



 b =





1
1
1



 cT =





0.5
0.5
1





with φ
π
∈ R \Q and hk = 1 + cos [(k − 1)φ].
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Anderson et. al.: Nonnegative realizations of a linear system with
nonnegative impulse response (1995).

Theorem: Realization of primitive transfer functions

If H(z) has a unique dominant pole, then H(z) has a finite
positive realization.

Farina: On the existence of a positive realization (1996).

Theorem: Complete Algo. for pos. disc. SISO systems

Let H(0)(z) be a strictly proper transfer function of order n. Then
H(0)(z) has a positive realization if and only if

1 h(0)(k) is non-negative

2 all H(0,i0,i1,...,iq)(z) have a unique dominant pole.
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Question:

Is there an algorithm, that is
1 Numerically more efficient
2 Gives a minimal realization
3 Allows us to choose non-minimal modes manually
4 Works also in continuous time?

Can it help to realize part of a non-positive system positively?
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Model Reduction

Reis, and Virnik: Positivity preserving balanced truncation for
descriptor systems

Find diagonal P,Q ≥ 0 such that

AP + PAT +BBT ≤ 0

ATQ+QA+ CTC ≤ 0

Advantage:

+ Generic approach: Works for cont. and disc. time MIMO
descriptor systems.

+ Preserves the meaning of the states.

Disadvantages:

- Inapplicable for large scale systems: Solving LMIs is expensive.

- Dependence on a positive realization.

- Large errors and non-minimal approximations: Balancing is a
permutation.
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Grussler, Damm: A Symmetry Approach for Balanced Truncation
of Positive Linear Systems.

Theorem: Positive balanced truncation to order 1

Let (A1, B1, C1, D1) be the reduced system of order one obtained
by balanced truncation of a positive system. Then
(A1, |B1|, |C1|, D1) is a positive, asymptotically stable realization.

Theorem: Positivity of symmetric systems

Let (A, b, c) be an asymptotically stable SISO system with A = AT

and c = kbT , k > 0. Then the system possesses a positive
realization, which can be computed by Lanczos algorithm.

Theorem: Sign-symmetry of balanced SISO-systems
[Fernando, and Nicholson, TAC 1983]

Let G(s) be the transfer function of an arbitrary SISO-system.
Then a balanced realization (A, b, c) of G(s) is sign-symmetric, i.e.

|A| = |AT | and |b| = |cT |.
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Questions:

Can positivity help to reduce a system (not necessarily
positivity-preserving)?

How does it depend on the dominant poles?

What about Hankel optimal approximation?
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What I did not show you:

Positive systems with time-delays,

Switched positive systems,

Positive systems on time scales,

Funnel control of positive systems,

2D positive systems,

Behavior approach for positive systems,

Bi-linear positive systems,

Discretization of PDEs with positivity

Non-linear positive system

Infinite dimensional positive systems
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External Positivity

Definition: Externally positive system

A linear system (A,B,C,D) is called externally positive if and
only if its forced output (w.r.t. to the zero initial state) is
nonnegative for every nonnegative input.

Theorem: External Positivity

A linear system (A,B,C,D) is externally positive if and only its
impulse response is non-negative.
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Properties

From the non-negativity of the impulse response it follows:

G(0) =
∫∞

0 g(t)dt = ‖G‖∞

The dominant pole is real.

∀t ≥ 0 : Ce−AtB ≥ 0 ⇐⇒ ∀s ≥ 0 : (−1)kGk(s) > 0

No real zero is larger than the dominant pole.

There are no over- or undershoots in the step-response.

It seems externally positive systems are characterized on the real
line and the jω-axis.

Questions:

Can an iterative realization algorithm for positive systems give
a reasonable reduced model for external positive systems?

Can infinite dimensional theory of positive systems help?
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Positive Dominance

Definition: Positively dominated system

A system with transfer matrix G(s) is called positively dominated
if every matrix entry satisfies |Gjk(iω)| ≤ Gjk(0).

Properties:

The set of positively dominated systems is convex (as for
internal/external positivity).

(I −G)−1 is pos. dom. ⇔ ∃ξ ∈ Rn
+ : G(0)ξ � ξ
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Summary

Pos. Dom.

Ext. Pos. Int. Pos.

N
P
-h
ar
d

Still quite open
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Some new definitions of positivity

Definition 1: Monotone frequency response (Karl Johan’s)

A system with transfer function G(s) has a monotone frequency
response if |G(iω)| and arg(G(iω)) are monotone in ω.

Definition 2: Complex monotonicity

A system with transfer function G(s) is called complex monotone
if |G(x1 + iy1)| ≥ |G(x2 + iy2)| whenever 0 ≤ x1 ≤ x2 and
0 ≤ y1 ≤ y2.
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