Lecture 4 — Nonlinear Control

Nonlinear Controllability




Notes

Handout from Nonlinear Control Theory, Torkel Glad
(Link6éping)




Nonlinear System

= f(xu)
y = h(x,u)
Important special affine case:
= f(x)+g(x)u
= h(x)
f : drift term
g : input term



Basic Result: Linearization at (x,u()

x = f(x) +g(x)u

Theorem: Suppose f(xo) + g(xo)uo = 0. If

2 = Az+ Bv

0 0
A = 879]: xo) + %(xo)uo
B = g(xo)

is controllable, then for all T', ¢ > 0 the set
Xro={x(T); |u—uo| <e}

contains a neighborhood of x.



Rolling Penny

= ujcos(0)
= U1Sin(0) penny
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The linearization is not controllable (check)

Can the penny be moved sideways in small time (keeping the
head up)?




Rolling Penny

Yes it can. But it is not obvious.

Non-holonomic constraints a(z)z = 0

sind —cos® 0 O
cosf sind -1 0

i
y
¢
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Holonomic constraints A(z) = 0 = h,2 = 0.




Main new object: Lie Bracket of vector fields

Consider two vector fields x = f(x) and & = g(x)

Lie-bracket. New vector field

of
ox .

0




Why is it interesting?

x = g1(x)u1 + g2(x)ug

Controllability: If the Liebracket "tree" has full rank, then the
system is controllable




X1 = w
.’J'Cz = U9
X3 = Xiug £ xouq

1 0
This means g; = 0 |andgo= | 1
:I:x2 X1
0 0 O
0 0 O
0 0
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[91,92] = | O
1 +1



Hence at x = 0 we have

1 0 0
91=10|, g92= |1, lg91,92] = 0
0 0 1—41

With the minus-sign the three vector fields span R2, and we
have controllability.

With the plus-sign the system is not controllable, in fact it can
be seen that x? + x2 — 2x3 is an invariant.




Some more notation

X'(p) = solution to & = X (x),x(0) =
Xtis smooth. X% = id

_ . g(X"(p)) — g(p)
Lx(g) =X ZX@xl =1 h

Lyxipy =aLx + BLy, a,BER




= f(x)+g(x)u

= h(x)
8h 8h
th + uL h

(Lf+gu)kh




Lie-Brackets

[X, Y]p(f) = Xp(Y(f)) - Yp(X(f))

X, Y;
X~ | : Y~ |
Xn Y,
Y . 0X
SR =
[X,Y] = —




Another example

X = (Cof(p] ~cos¢§r+r;¢
r 0 0
(1 0) (cos¢ 0 —sing) (r
= (o) ()-8 79 ()

0 0
] ~ (cos ¢ — sin¢)§ —r%

_ [cos¢ —sin¢

—-r




Lie-Brackets

Why are Lie-brackets so fundamental?
X = giu1 + gaug

(1,0) t€[0,h)

_ (0,1) te€ [h,2h)
(@a()u2()) = Z10) te [2h,3R)
(0,—1) t € [3h,4h)

xo + h?[g1,g2] + O(R®)

x(4h)
Trotters Product Formula
[3 t t 12 n
Plxy = lim (qa_‘/l;@_@@;/: cb}(/:>
(1 + t— +o(tf)> = etf
n n

Proof sketch



Some Lie-Bracket Formulas

[fX,9Y] = fglX,Y]+ fX(9)Y —gY(f)X
[X,Y]=—-[Y,X]
[X1, [Xo, X5]] + [ X2, [X3, X1]] + [X3, [X1, X2]] = 0

LxY =[X,Y] = }L%%[X;hy— Y]

—h~yr ny't w
X, Y—r;)adXYn! =Y +h[X, Y]+ o [X,[X,Y]]...

related to

edeB = eC; C=A+B+%[A,B]+...



Park Your Car Using Lie-Brackets!

(x,y) : position
¢ : direction of car
0 direction of wheels

(xyya(b’e) € R2 x Sl X [eminyemaX]



Parking cont'd

0
0
g1 = Steer = 0
1

(cos(¢ + 0)

— Drive — |sin(¢+6)

go = Drive = sin(6)
0

\




—sin(¢ + 6)
cos(¢ + 0)
cos(6)

0

[Steer, Drive] = ... =

:= Wriggle




Define
—sin(¢ + 0)

Slide := | 5@ +9)

We have
Slide’(x,y,9,0) = (x — tsin(@), x + t cos(¢), ¢, 0)
An easy calculation (exercise) shows that

[Wriggle, Drive] = Slide

Fundamental Parking Theorem

You can get out of any parking lot that is larger than the car.
Use the following control: Wriggle, Drive, —Wriggle (this
requires a cool head), —Drive (repeat).

Proof: Trotters Product Formula



Linear Systems

%= Ax+ Bu = f(x) + g(x)u

[f,9] = [Ax,B]=0—AB
lg,[f,9]] = 0

[f,[f.g]] = [Ax,—AB]=A’B

k Lie-brackets




Controllability Theorem

X =2 9i(x)ui
C = smallest Lie subalg. containing {g1,...,9m}

Controllability:

dim C = n = can reach open set

With drift term f(x) the theorem is slightly different




