
Lecture 3 – Nonlinear Control

Center Manifold Theorem
Robustness analysis and quadratic inequalities



Material
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A. Megretski and A. Rantzer, System Analysis via Integral
Quadratic Constraints, IEEE Transactions on Automatic
Control, 47:6, 1997

U. Jönsson, Lecture Notes on Integral Quadratic
Constraints

User’s guide to µ—toolbox, Matlab



The Center Manifold Theorem

[Khalil ch 8]

What can we do if the linearization A =
� f

�x
has zeros on the

imaginary axis?



Center Manifold Theory

Assume that a system ( possibly via a state space
transformation [x] → [yT , zT ]T ) can be written as

ẏ = A0y+ f 0(y, z)

ż = A−z+ f−(y, z)

A−: asymptotically stable

A0: eigenvalues on imaginary axis

f 0 and f− second order and higher terms.



Center Manifold Theorem

Assume [yT , zT ]T = 0 is an equilibrium point. For every k ≥ 2
there exists a δ k > 0 and Ck mapping h such that h(0) = 0 and
h′(0) = 0 and the surface

z = h(y) qyq ≤ δ k

is invariant under the dynamics above.



Proof Outline

For any continuously differentiable function hk, globally
bounded together with its first partial derivative and with
hk(0) = 0, h′(0) = 0, let hk+1 be defined by the equations

ẏ = A0y+ f 0(y,hk(y))

ż = A−z+ f−(y,hk(y))

hk+1(y) = z

Under suitable assumptions, it can be verified that this defines
hk+1 uniquely. Furthermore, the sequence {hi} is contractive in
the norm supy hi(y) and the limit h satisfies the conditions for a
center manifold.



Usage

1) Determine z = h(y), at least approximately.
(E.g., do a series expansion and identify coefficients...)

2) The local stability for the entire system can be proved to be
the same as for the dynamics restricted to a center manifold:

ẏ = A0y+ f 0(y,h(y))



Usage — cont’d

In the case of using series expansion of h(y) = c2y2 + c3y3 + ...,
you would need to continue (w.r.t the order of the terms) until
you have been able to determined the local behavior. (Low
order terms dominate locally).

Identify the coefficients from
the boundary condition [Khalil (8.8, 8.11)]

�h

�y
(y)[A0y+ f 0(y,h(y))] − A−h(y) − f−(y,h(y)) = 0



Example

ẏ = z

ż = −z+ ay2 + byz

Here A0 = 0 and A− = −1. z = h(y) gives

−h+ ay2 + byh− h′h = 0

hence

h(y) = ay2 + O(pyp3)

Substituting into the dynamics we get

ẏ = ay2 + O(pyp3)

so x = (0, 0) is unstable for a ,= 0.



Non-uniqueness

The center manifold need not be unique

Example

ẏ = −y3

ż = −z

z = h(y) gives

h′y3 = z = h(y)

which has the solutions

h(y) = Ce−1/(2y
2)

for all constants C.



Robustness analysis and quadratic inequalities

• µ-analysis
• S-procedure
• Multipliers
• Integral Quadratic Constraints
• Performance analysis



Preview — Example

A linear system of equations
{
x = y

y = 1.1− 0.1x
[ x = y = 1

Equations with uncertainty
{
(x − y)2 < ǫ1x

2

(y+ 0.1x − 1.1)2 < ǫ2

[ (x − 1)2 + (y− 1)2 < ǫ3

Given ǫ1 and ǫ2, how do we find a valid ǫ3?



Example

∆

+C(sI − A)−1B
v w r

Question: For what values of ∆ is the system stable?
Note: May be large differences if we consider complex or real
uncertainties ∆.

“A formula for Computation of the Real Stability Radius”, L. Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, and

P.M. Young. Automatica, pp. 879–890, vol 31(6), 1995.



Parametric Uncertainty in Linear Systems

LetD ⊂ Rn$n contain zero. The system ẋ = (A+ B∆C)x is
then exponentially stable for all ∆ ∈D if and only if

A is stable

det
[
I − ∆C(iω I − A)−1B

]
,= 0 for ω ∈ R, ∆ ∈D

∆

+C(sI − A)−1B
v w r



Use quadratic inequalities at each frequency!

w=
[
I − ∆C(iω I − A)−1B

]−1
r

{
w = ∆v+ r

v = C(iω I − A)−1Bw

For example, if

D =

{[
δ 1 0

0 δ 2

]
: δ k ∈ [−1, 1]

}

Then a bound of the form pwp2 < γ 2prp2 can be obtained using

pw1 − r1p
2 < pv1p

2

pw2 − r2p
2 < pv2p

2

[
v1
v2

]
= C(iω I − A)−1B

[
w1
w2

]

This verifies that det
[
I − ∆C(iω I − A)−1B

]
,= 0.



Structured Singular Values

Given M ∈ Cn$n and a perturbation set

D = {diag[δ 1 Ir1 , . . . ,δm Irm ,∆1, . . . ,∆p] : δ k ∈ R,∆l ∈ C
ml$ml}

the structured singular value µD (M) is defined by

µD (M) = sup{σ̄ (∆)
−1 : ∆ ∈D , det(I −M∆) = 0}

See Matlab’s µ − toolbox



Reformulated Definition

The following two conditions are equivalent

(i) 0 ,= det[I − ∆M(iω )] for all ∆ ∈D and ω ∈ R

(ii) µD (M(iω )) < 1 for ω ∈ R



Bounds on µ

IfD consists of full complex matrices, then µD (M) = σ̄ (M).

where σ̄ (M) is the largest singular value of M = the larges eigenvalue
of the matrix M∗M .

IfD consists of perturbations of the form ∆ = δ I with
δ ∈ [−1, 1], then µD (M) is equal to the magnitude ρR(M) of
the largest real eigenvalue of M (“the spectral radius”). In

general

ρR(M) ≤ µD (M) ≤ σ̄ (M)



Computation of µ

Define

UD = {U ∈D : U
′U = I}

DD = {D = D
′ ∈ Cn : D∆ = ∆D for all ∆ ∈D}

GD = {G = G
′ ∈ Cn : G∆ = ∆′G for all ∆ ∈D}

Then

sup
U∈UD

ρR(UM) ≤ µD (M) ≤ inf
D ∈DDG ∈GD

µ̂(D,G) ≤ inf
D∈DD

σ̄ (DMD−1)

where

µ̂(D,G) = inf{µ > 0 : M ′D′DM + j(GM − M ′G) < µ2D′D}



S-procedure

Let M0, M1, . . .Mp be quadratic functions of z ∈ Rn

Mi = z
TTiz+ 2uiz+ vi, i = 0, . . . , p

where Ti = TTi .

Consider the following condition on M0, M1, . . .Mp:

M0(z) ≤ 0 for all z such that Mi(z) ≥ 0, i = 1, . . . , p
(1)



Consider the following condition on M0, M1, . . .Mp:

M0(z∗) ≤ 0 for all z∗ such that Mi(z∗) ≥ 0, i = 1, . . . , p
(1)

Obviously,

if there exists τ1 ≥ 0, . . .τ p ≥ 0 such that for all z

M0(z) +

p∑

i=1

τ iMi(z) ≤ 0 (2)

then (1) holds.

Nontrivial fact, that when p = 1 , (1) implies (2), provided that
there exist some z0 such that M0(z0) < 0.



S-procedure for quadratic inequalities

The inequality



x

y

1



T

M0



x

y

1


 ≤ 0

follows from the inequalities



x

y

1



T

M1



x

y

1


 ≥ 0



x

y

1



T

M2



x

y

1


 ≥ 0

if there exist τ1,τ2 ≥ 0 such that

M0 + τ1M1 + τ2M2 ≤ 0

Numerical algorithms in available (e.g. in Matlab), see also
[Boyd et al]



S-procedure in general

The inequality

σ 0(h) ≤ 0

follows from the inequalities

σ 1(h) ≥ 0, . . . ,σ n(h) ≥ 0

if there exist τ1, . . . ,τn ≥ 0 such that

σ 0(h) +
∑

k

τ kσ k(h) ≤ 0 ∀h



S-procedure losslessness by Megretski/Treil

Let σ 0,σ 1, . . . ,σ n be time-invariant quadratic forms on Lm2 .
Suppose that there exists z∗ such that

σ 1(z∗) > 0, . . . ,σm(z∗) > 0

Then the following statements are equivalent

σ 0(z) ≤ 0 for all z such that σ 1(z) ≥ 0, . . . ,σ n(z) ≥ 0

There exist τ1, . . . ,τn ≥ 0 such that

σ 0(z) +
∑

k

τ kσ k(z) ≤ 0 ∀z



Integral Quadratic Constraint

An IQC expresses information of a subsystem. Should be
convenient to use for analysis of a larger system.

Unifies

Multiplier (Zames-Falb)

Passivity

Absolute stability

µ



Passivity Theorem is a “Small Phase Theorem”

−

r1

r2

y1

y2

e1

e2

S1

S2

φ2φ1

A passive operator can also be viewed as
a sector condition [0,∞).

Compare circle criterion: Nyquist curve should avoid "circle"
(− 1α ,−

1
β ) → whole LHP as α → 0 and β →∞.



Multipliers

Cut the loops in smart ways or introduce multipliers (Bounded
operators M and M−1).

Same idea as loop transformations: should be easier to prove
stability for transformed system.

M

M−1

G1

G2

G̃1

G̃2



Multipliers, cont’d

Example: Negative feedback of linear system

G(s) = C(sI − A)−1B

with nonlinearity with positivity property ϕ(y) ⋅ y≥ 0.

Circle criterion assures exponential stability if

Re{G(iω )} > 0 ω ∈ R

Compare (strict) passivity conditions



Multipliers, cont’d

Zames-Falb (1968):

Circle criterion can be improved if there are additional
assumptions on the nonlinearity as e.g., monotonicity or
bounds on slope.

If
dϕ(y)

dy
≥ 0, Z-F introduced extra freedom with

H ∈ RL∞ and ppH ppL1 ≤ 1

such that absolute stability is assured if

Re{G(iω )−1 ⋅ (1+ H(iω ))} > 0, ω ∈ R {0}

Compare with Popov-criterion conditions



Integral Quadratic Constraint

∆ -- ∆vv

The causal bounded operator ∆ on Lm2 is said to satisfy the IQC
defined by the matrix function Π(iω ) if

∫ ∞

−∞

[
v̂(iω )

(̂∆v)(iω )

]∗

Π(iω )

[
v̂(iω )

(̂∆v)(iω )

]
dω ≥ 0

for all v ∈ L2.

Trivial for Π > 0, but almost all interesting cases have non-positive Π.



Integral Quadratic Constraint

∆ -- ∆vv

The causal bounded operator ∆ on Lm2 is said to satisfy the IQC
defined by the matrix function Π(iω ) if

∫ ∞

−∞

[
v̂(iω )

(̂∆v)(iω )

]∗

Π(iω )

[
v̂(iω )

(̂∆v)(iω )

]
dω ≥ 0

for all v ∈ L2.

Trivial for Π > 0, but almost all interesting cases have non-positive Π.



Example — Gain and Passivity

Suppose the gain of ∆ is at most one. Then

0 ≤

∫ ∞

0

(pvp2 − p∆vp2)dt =

∫ ∞

−∞

[
v̂(iω )

(̂∆v)(iω )

]∗ [
I 0

0 −I

][
v̂(iω )

(̂∆v)(iω )

]
dω

Suppose instead that ∆ is passive. Then

0 ≤

∫ ∞

0

v(t)(∆v)(t)dt =

∫ ∞

−∞

[
v̂(iω )

(̂∆v)(iω )

]∗ [
0 I

I 0

][
v̂(iω )

(̂∆v)(iω )

]
dω

Note: Scaling in Parseval’s formula neglected here (does not affect sign of

IQC).



Exercise

Show that a nonlinearity satisfying the sector condition

α y2 ≤ ϕ(t, y)y≤ β y2

satisfies the IQC, ϕ ∈ IQC(Π) given by

Π( jω ) = Π =

[
−2α β α + β
α + β −2

]

Note: Satisfies a quadratic inequality (for every frequency) =[
satisfies integral quadratic inequality



IQC’s for Coulomb Friction




f (t) = −1 if v(t) < 0
f (t) ∈ [−1, 1] if v(t) = 0
f (t) = 1 if v(t) > 0

Zames/Falb’s property

0 ≤

∫ ∞

0

v(t)[ f (t) + (h ∗ f )(t)]dt,

∫ ∞

−∞
ph(t)pdt ≤ 1

0 ≤

∫ ∞

−∞

[
v̂

f̂

]∗ [
0 1+ H(iω )

1+ H(−iω ) 0

] [
v̂

f̂

]
dω



∆ structure Π(iω ) Condition

∆ passive
[
0 I

I 0

]

q∆(iω )q ≤ 1

[
x(iω )I 0

0 −x(iω )I

]
x(iω ) ≥ 0

δ ∈ [−1, 1]

[
X (iω ) Y(iω )
Y(iω )∗ −X (iω )

]
X = X ∗ ≥ 0
Y = −Y∗

δ (t) ∈ [−1, 1]

[
X Y

YT −X

]

(∆v)(t) = sgn(v(t))

[
0 1+ H(iω )

1+ H(iω )∗ 0

]
qHqL1 ≤ 1



Well-posed Interconnection

G(s)

τ ∆

c

c

��

--

?

6
v

w

f

e

The feedback interconnection
{
v = Gw+ f
w = ∆(v) + e

is said to well-posed if the map (v,w) ]→ (e, f ) has a causal
inverse. It is called BIBO stable if the inverse is also bounded.



Use as many IQCs as possible to characterize the
nonlinearity/uncertainty.
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∆

IQC(Π1)

IQC(Π2)

IQC(Π3)

In this case IQC(Π3) does not help to restrict the complete set
that satisfy the IQCs.



IQC Stability Theorem

G(s)

τ ∆

c

c

��

--

?

6

Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆

satisfies the IQC defined by Π(iω ). If

[
G(iω )
I

]∗

Π(iω )

[
G(iω )
I

]
< 0 for ω ∈ [0,∞]

then the feedback system is BIBO stable.



Computations via LMI’s

[
G(iω )
I

]∗ ∑

k

τ kΠ(iω )

[
G(iω )
I

]
< 0 for ω ∈ [0,∞]

[
(iω I − A)−1B

I

]∗

(M +
∑

k

τ kMk)

[
(iω I − A)−1B

I

]
< 0 for ω ∈ [0,∞]

n∑

i=1

τ kMk +

[
ATP+ PA PB

BTP 0

]
< 0.

Solve for τ1, . . . ,τn ≥ 0 and P.



Relation to Passivity and Gain Theorems

G(s)

τ ∆

c

c

��

--

?

6

A stability theorem based on gain is recovered with
[
I 0

0 −I

]
.

A passivity based stability theorem is recovered with
[
0 I

I 0

]
.



Special Case — µ Analysis

Note that ∆ = diag{δ 1, . . . ,δm}, with pδ kp ≤ 1 satisfies the IQC
defined by

Π(iω ) =

[
X (iω ) 0

0 −X (iω )

]

where X (iω ) = diag{x1(iω ), . . . , xm(iω )} > 0.

Feedback loop stability follows if there exists X (iω ) > 0 with

G(iω )∗X (iω )G(iω ) < X (iω ) ω ∈ [0,∞]

or equivalently, with D(iω )∗D(iω ) = X (iω )

sup
ω
qD(iω )G(iω )D(iω )−1q < 1



Combination of Uncertain and Nonlinear Blocks

The operator ∆(v1,v2) = (δ v1,φ(v2)) where

δ ∈ [−1, 1]

α ≤ φ(v2)/v2 ≤ β

satisfies all IQC’s defined by matrix functions of the form

Π(iω ) =




X (iω ) 0 Y(iω ) 0

0 −2α β 0 α + β
Y(iω )∗ 0 −X (iω ) 0

0 α + β 0 −2




where X (iω ) = X (iω )∗ and Y(iω ) = Y(iω )∗.



Proof idea of IQC Theorem

Combination of the IQC for ∆ with the inequality for G gives
existence of c0 > 0 such that

qvq ≤ c0qv− τG∆(v)q v ∈ L2,τ ∈ [0, 1]

If (I − τG∆)−1 is bounded for some τ ∈ [0, 1] then the above
inequality gives boundedness of (I −νG∆)−1 for all ν with

c0qG∆q ⋅ pτ −ν p < 1

Hence, boundedness for τ = 0 gives boundedness for
τ < (c0qG∆q)−1. This, in turn, gives boundedness for
τ < 2(c0qG∆q)−1 and so on. Finally the whole interval [0, 1] is
covered.



A toolbox for IQC analysis

Copy /home/kursolin/matlab/lmiinit.m to the current
directory or download and install the IQCbeta toolbox from
http://www.ee.mu.oz.au/staff/cykao/

e- - -

��

−10s2

s3+2s2+2s+1

�

?e(t) y(t)

−4 −2 0 2 4 6 8

−2

0

2

4

6

8

G(iω )

>> abst_init_iqc;

>> G = tf([10 0 0],[1 2 2 1]);

>> e = signal

>> w = signal

>> y = -G*(e+w)

>> w==iqc_monotonic(y)

>> iqc_gain_tbx(e,y)



A simulation model



An analysis model defined graphically

The text version (i.e., NOT the gui) is strongly recommended by
the IQCbeta author(s) at present version!!



z iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5

states: 10

simple q-forms: 7

LMI #1 size = 1 states: 0

LMI #2 size = 1 states: 0

LMI #3 size = 1 states: 0

LMI #4 size = 1 states: 0

LMI #5 size = 1 states: 0

Solving with 62 decision variables ...

ans = 4.7139

The text version (i.e., NOT the gui) is strongly recommended by the
IQCbeta author(s) at present version!!



A library of analysis objects



Bounds on Auto Correlation

system-u

The auto correlation bound
∫ ∞

−∞
u(t)∗u(t− T)dt ≤ α

∫ ∞

−∞
u(t)∗u(t)dt,

corresponds to

Ψ(iω ) = 2α − eiωT − e−iωT .



Dominant Harmonics

system-u

For small ǫ > 0, the constraint

∫ ∞

0

pû(iω )p2dω ≤ (1+ ǫ)

∫ b

a

pû(iω )p2dω

means that the energy of u is concentrated to the interval [a, b].



Incremental Gain and Passivity

∆ -- ∆vv

A causal nonlinear operator ∆ on Lm2 is said to have
incremental gain less than γ if

q∆(v1) − ∆(v2)q ≤ γ qv1 − v2q v1,v2 ∈ L2

It is called incrementally passive if

0 ≤

∫ T

0

[∆(v1) − ∆(v2)][v1 − v2]dt T > 0,v1,v2 ∈ L2



Incremental Stability

G(s)

τ ∆

c

c

��

--

?

6
v

w

f

e

The feedback interconnection
{
v = Gw+ f
w = ∆(v) + e

is called incrementally stable if there is a constant C such that
any two solutions (e1, f1,v1,w1), (e2, f2,v2,w2) satisfies

qv1 − v2q + qw1 −w2q ≤ Cqe1 − e2q + Cq f1 − f2q



Robust Performance

∆

G11(iω ) G12(iω )
G21(iω ) G22(iω ) ��

?
6



A Converse Small Gain Theorem

The static case
A matrix M satisfies σ̄ (M) < 1 if and only if 0 ,= det(I − ∆M)
for all matrices ∆ with σ̄ (∆) ≤ 1.

The dynamic case
A stable transfer matrix G(s) satisfies qGq∞ < 1 if and only if
[I − ∆(s)G(s)]−1 is stable for every stable ∆(s) with q∆q∞ < 1.



Proof in the Static Case

Suppose that det(I − ∆M) = 0 and σ̄ (∆) ≤ 1. Then there
exists x ,= 0 such that x − ∆Mx = 0 and

pxp = p∆Mxp ≤ pMxp

so σ̄ (M) ≥ 1.

On the other hand, if σ̄ (M) ≥ 1, there exists x ,= 0 with
pMxp ≥ pxp. Let

∆ =
xM ′x′

pMxp2

Then σ̄ (∆) ≤ 1 and (I − ∆M)x = 0, so det(I − ∆M) = 0.



Robust Performance Theorem

Suppose that σ̄ (M11) ≤ 1 and thatD is a connected set of
matrices with 0 ∈D . Let
D1 = {diag(∆1,∆) : σ̄ (∆1) ≤ 1,∆ ∈D}. Then the following
conditions are equivalent.

(i) σ̄ (M11 + M12[I − ∆M22]
−1∆M21) < 1 for ∆ ∈D

(ii) 0 ,= det
(
I −

[
∆1 0

0 ∆

] [
M11 M12
M21 M22

])
for

{
∆ ∈D

σ̄ (∆1) ≤ 1

(iii) µD1

([
M11 M12
M21 M22

])
≤ 1 for ω ∈ R



Proof

The conditions (ii) and (iii) are equivalent by the definition of
µ. Moreover, we showed on the previous slide that (i) fails if
and only if there exists ∆1 with σ̄ (∆1) ≤ 1 and x1 ,= 0 such that

0 = {I − ∆1(M11 + M12[I − ∆M22]
−1∆M21)}x1

Introduce x2 = [I − ∆M22]
−1∆M21x1. Then

[
x1
x2

]
=

[
∆1 0

0 ∆

] [
M11 M12
M21 M22

] [
x1
x2

]

This is possible if and only if (ii) fails, so the equivalence of (i)
and (ii) is proved.



Example

Compute

max
pδ kp≤1

sup
ω

δ 1
(iω )2 + (2+ δ 2)iω + 2+ δ 1δ 2

This is the worst case gain of the system
{
ÿ = −(2+ δ 2)ẏ− (2+ δ 1δ 2)y+ δ 1u = −2ẏ− 2y− δ 1v1 − δ 2v2

v1 = −δ 2v3 + u, v2 = ẏ, v3 = y



ẏ

ÿ

v1
v2
v3
y







0 1 0 0 0 0

−2 −2 1 −1 0 0

0 0 0 0 −1 1
0 1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0







y

ẏ

δ 1v1
δ 2v2
δ 2v3
u






Performance Analysis via S-procedure

The performance criterion

σ 0(h) ≤ 0 ∀h ∈N

follows from the IQC’s

σ 1(h) ≥ 0, . . . ,σ n(h) ≥ 0 ∀h ∈N

if there exist τ1, . . . ,τn ≥ 0 such that

σ 0(h) +
∑

k

τ kσ k(h) ≤ 0 ∀h ∈ Ln2



Performance Bounds from IQC’s

∆

G11 G12
G21 G22 �

w

u
�

v

y

?
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Suppose that ∆ satisfies the IQC defined by Π. Then the gain
bound qyq ≤ γ quq holds provided that the system is stable and

0 ≥

[
G(iω )
I

]∗




Π11 0 Π12 0

0 I 0 0

Π21 0 Π22 0

0 0 0 −γ 2 I



[
G(iω )
I

]
ω ∈ R


